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IRREGULAR LOCI IN THE EMERTON-GEE STACK FOR GL2

REBECCA BELLOVIN, NEELIMA BORADE, ANTON HILADO, KALYANI KANSAL,
HEEJONG LEE, BRANDON LEVIN, DAVID SAVITT, AND HANNEKE WIERSEMA

Abstract. Let K/Qp be unramified. Inside the Emerton–Gee stack X2, one

can consider the locus of two-dimensional mod p representations of Gal(K/K)
having a crystalline lift with specified Hodge–Tate weights. We study the case
where the Hodge–Tate weights are irregular, which is an analogue for Galois
representations of the partial weight one condition for Hilbert modular forms.
We prove that if the gap between each pair of weights is bounded by p (the
irregular analogue of a Serre weight), then this locus is irreducible. We also
establish various inclusion relations between these loci.

1. Introduction

1.1. Emerton–Gee and CEGS stacks. Let K be a finite extension of the p-
adic numbers Qp, with residue field k and absolute Galois group GK . Emerton
and Gee [EG2] have pioneered the study of certain moduli stacks of d-dimensional
representations of GK . More precisely, the Emerton–Gee stack Xd is a formal stack
over Spf(Zp) whose A-valued points, for each p-adically complete Zp-algebra A,
are the rank d étale (ϕ,Γ)-modules with A-coefficients; in particular, the F-points
of Xd for any finite extension F/Fp are interpretable as Galois representations
ρ : GK → GLd(F). The book [EG2] gives several important applications of this
construction, including the first proof that any such ρ has a lift to characteristic
zero, and still the only proof that any such ρ has a crystalline lift.

It is expected that the Emerton–Gee stacks will play a central role in a cate-
gorification of the p-adic Langlands correspondence. This expectation is described
at length in the survey article [EGH]. As a first indication that the stacks Xd

have some bearing on the representation theory of p-adic groups, Emerton and
Gee establish a bijection between the irreducible components of the underlying re-
duced substack Xd,red of Xd in the sense of [Eme, Def 3.27], and the irreducible

Fp-representations of GLd(k) (which are traditionally called Serre weights). Let
X σ

d,red denote the component of Xd,red corresponding to the Serre weight σ.

The bijection of [EG2] between Serre weights σ and components X σ
d,red is char-

acterized by a description of a dense set of finite type points on each component of
Xd,red. In the rank d = 2 case, however, more is known: namely there is a complete
description of all finite type points on each component of Xd,red. Recall that to
each ρ : GK → GL2(F) the work of [BDJ] associates a set W (ρ) of Serre weights.
In fact this set has several descriptions, which are known to be equivalent due to
the work of a number of authors [BLGG, GLS1, GLS2, GK]. One such description
is in terms of the existence of crystalline lifts having certain regular Hodge–Tate
weights. Then we have the following; here we recall that a Serre weight is said
to be Steinberg if it is isomorphic to a twist by a character of the representation
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St := ⊗κ:k→֒Fp
(Symp−1 k2) ⊗k,κ Fp, the tensor product taken over all the embed-

dings of k into Fp.

Theorem 1.1 ([CEGSa, Thm. 1.2], [EG2, Thm. 8.6.2]). Suppose that p > 2.

(1) If the weight σ is non-Steinberg, then σ ∈W (ρ) if and only if ρ lies on the
component X σ

2,red.

(2) If instead σ = χ⊗ St is Steinberg, then χ⊗ St ∈ W (ρ) if and only if ρ lies

on the union Xχ
2,red ∪ X

χ⊗St
2,red .

In fact even more is true: the cycles X σ
2,red (in the non-Steinberg case) and Xχ

2,red+

Xχ⊗St
2,red (in the Steinberg case) form the cycles in a “universal” geometric version of

the Breuil–Mézard conjecture for potentially Barsotti–Tate representations.
The proof of Theorem 1.1 makes essential use of another stack Zdd, first defined

in [CEGSb], whose A-valued points are rank 2 étale ϕ-modules with tamely ramified
descent data, and whose F-points are interpretable as Galois representations ρ :
GK → GLd(F) having tamely potentially Barsotti–Tate lifts, or equivalently Galois
representations that are not très ramifiée up to twist.

The irreducible components Z(σ) of the underlying reduced substack of Zdd are
in bijection with the non-Steinberg Serre weights. To prove Theorem 1.1 one first
establishes the following analogue of Theorem 1.1(1) for the components Z(σ).

Theorem 1.2 ([CEGSa, Thm 1.4(1)]). Suppose that p > 2. If the weight σ is
non-Steinberg, then σ ∈W (ρ) if and only if ρ lies on the component Z(σ).

The authors then transfer this result from Zdd to X2 using the fact that these
stacks have the same versal deformation rings.

One of the main results of this paper is that certain closed substacks of X2 and
Zdd are in fact isomorphic (we will be more precise in a moment about exactly
which substacks). Although this is wholly expected, it is quite useful, for the fol-
lowing reason. The existence of substacks of mod p Galois representations satisfying
various p-adic Hodge theoretic conditions is known on the side of the Emerton–Gee
stacks (we will denote these stacks by the symbol X with various decorations), but
not on the side of the CEGS stacks (which are the stacks here denoted Z with
various decorations). On the other hand, calculations are generally easier on the
Z side than on the X side. Thanks to the isomorphism between the two sides, we
can pass the existence of p-adic Hodge theoretic loci from the X side to the Z side,
study their properties on the Z side, and then transfer these results back to the X
side, which is the side of greater intrinsic interest.

1.2. Irregular loci. The other main results of our paper are applications of the
above method to the closed substacks of X2,red of mod p Galois representations
having certain irregular Hodge–Tate weights; these substacks have positive codi-
mension in X2,red. The condition of being irregular is the analogue for Galois
representations of the partial weight one condition for Hilbert modular forms.

To discuss these results, we assume for the remainder of the paper that the
extension K/Qp is unramified and write f = [K : Qp]; there is probably no con-
ceptual barrier that would prevent us from studying the ramified case, but the
analysis would become considerably more complicated. Let r denote the collection
of integers {rκ,1, rκ,2}κ:k→֒Fp

, with 0 ≤ rκ,1 − rκ,2 ≤ p. In the terminology of

Definition 4.7, we say that r is a p-bounded Hodge type.
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Let us write X
r
red for the reduced closed substack of X2,red whose F-points are

representations ρ : GK → GL2(F) having crystalline lifts with labeled Hodge–Tate
weights {rκ,1, rκ,2}. Thanks to the results of [GLS1] on the weight part of Serre’s
conjecture, the condition that σ ∈ W (ρ) is equivalent to a statement about the
existence of crystalline lifts of ρ. As a consequence, if the Hodge type r is regular,
meaning that rκ,1 > rκ,2 for all κ, then Theorem 1.1 says precisely that X r

red is one
of the irreducible components of X2,red (or a union of two irreducible components,
in case all the differences rκ,1 − rκ,2 are equal to p).

We are interested in saying something about the stacks X r
red in the irregular

case, i.e., when rκ,1 = rκ,2 for one or more embeddings κ (in which case X r
red has

codimension in X2,red equal to the number of embeddings κ such that rκ,1 = rκ,2).
To explain how we do this, we need to introduce the companions of the stacks X

r
red

on the side of the CEGS stacks.
By construction the stack Zdd is equipped with a morphism

(1.3) Cdd,BT → Zdd

where Cdd,BT is the stack of Breuil–Kisin modules of height at most one with tame
descent data and satisfying a Kottwitz-type determinant condition. Indeed, Zdd is
defined to be the scheme-theoretic image (in the sense of [EG1]) of Cdd,BT in the
stack of étale ϕ-modules with descent data.

The map (1.3) can be thought of as a partial resolution of the stack Zdd. Resolu-
tions of moduli of Galois representations by moduli of objects coming from integral
p-adic Hodge theory have played a fundamental role in the deformation theory of
Galois representations, and hence in the study of automorphy lifting theorems, go-
ing back to the work of Wiles and Taylor–Wiles [Wil, TW]. In this particular guise
the inspiration comes from the work of Kisin, as the map (1.3) can be thought of
as a globalization of the maps ΘVF

of [Kis].
A large part of this article can be thought of as an analysis of some of the finer

properties of the map (1.3). To say more, we need to introduce some additional
notation. The stack Cdd,BT has a decomposition

∐

τ

Cτ,BT

where the disjoint union is taken over tame inertial types τ : IK → GL2(Qp), and

the substack Cτ,BT consists of Breuil–Kisin modules whose descent data has type τ .
We write Zτ for the scheme-theoretic image of Cτ,BT in Zdd. By Theorem 1.4(2) of
[CEGSa] the underlying reduced substack Zτ,1 of Zτ is precisely the union of the
components Z(σ) for Serre weights σ that occur as Jordan–Hölder factors of σ(τ),
the reduction mod p of the representation σ(τ) associated to τ by the inertial local
Langlands correspondence. We can now state precisely which of the Emerton–Gee
and CEGS stacks we check are isomorphic.

Theorem 1.4 (Theorem 4.5). The stack Zτ is isomorphic to X τ,BT, the Emerton–
Gee stack of potentially Barsotti–Tate representations of type τ .

Assume henceforth that the type τ is non-scalar. The underlying reduced sub-
stack Cτ,BT,1 of Cτ,BT has precisely 2f irreducible components Cτ (J), indexed by
subsets J of the set of embeddings κ : k →֒ Fp. Write Zτ (J) for the scheme-
theoretic image of Cτ (J) in Zτ,1.
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There is a combinatorial formula (which we recall in equation (1.12) below) which
associates to each pair (τ, J) a tuple of integers sJ,κ ∈ [−1, p − 1] indexed by the

embeddings κ : k →֒ Fp, as well as a character ΘJ : k → F
×

p . Define Pτ to be the
collection of sets J such that sJ,κ ∈ [0, p−1] for all κ, i.e., such that sJ,κ = −1 does
not occur. Then for each J ∈ Pτ , it makes sense to define the Serre weight

σ(τ)J = (ΘJ ◦ det)⊗
⊗

κ:k→֒Fp

(SymsJ,κ k2)⊗k,κ Fp.

Every irreducible component of both Cτ,BT,1 and Zτ,1 has dimension [K : Qp].
Under the map

Cτ,BT,1 → Zτ,1,

it is proved in [CEGSc] that

• If J ∈ Pτ , then the component Cτ (J) dominates a component of Zτ,1; that
is, Zτ (J) is some irreducible component of Zτ,1; while on the other hand,
• If J 6∈ Pτ , then the scheme-theoretic image of Cτ (J) in Zτ,1 has positive
codimension. Following [CEGSc] we refer to these Cτ (J) as “vertical com-
ponents” of Cτ,BT,1.

The first part is made more precise in [CEGSa], as follows.

Theorem 1.5 ([CEGSa, Thm. 6.2(5)]). If J ∈ Pτ , then Zτ (J) is precisely the
component Z(σ(τ)J ); in particular, we have ρ ∈ Zτ (J) if and only if σ(τ)J ∈W (ρ),
and Zτ (J) depends only in the Serre weight σ(τ)J .

Equivalently, again using the results of [GLS1] on the weight part of Serre’s con-

jecture, Theorem 1.5 can be rephrased as follows. (Here Θ̃J is any extension to GK

of the inertial character identified with ΘJ via Artin reciprocity. See Section 1.4.1
for the various normalizations related to Serre weights and Hodge–Tate weights
that we use throughout this paper.)

Theorem 1.6 ([CEGSa, Thm. 6.2(5)], second version). Suppose J ∈ Pτ . Then

ρ ∈ Zτ (J) if and only if ρ ⊗ Θ̃−1
J has a crystalline lift with κ-labeled Hodge–Tate

weights {−sJ,κ, 1} at each embedding κ : k →֒ Fp.

In other words, for regular Hodge types r, the companions of the stacks X
r
red on

the CEGS side are precisely the stacks Zτ (J) for J ∈ Pτ . It is natural, then, to
imagine that the positive codimension loci Zτ (J) for J /∈ Pτ are the companions
of the stacks X

r
red for irregular r; and indeed, this is what we show.

Observe that the statement of Theorem 1.6 makes sense even if some sJ,κ is equal
to −1, i.e., if J 6∈ Pτ . The only difference is that when J ∈ Pτ , the Hodge–Tate
weights {−sJ,κ, 1} are always regular (distinct), while if sJ,κ = −1 then the κ-
labeled Hodge–Tate weights {−sJ,κ, 1} are irregular. We prove that the statement
of Theorem 1.6 remains valid even if J 6∈ Pτ ; that is, we prove the following.

Theorem 1.7 (Theorem 4.17). For general J we have ρ ∈ Zτ (J) if and only if

ρ⊗ Θ̃−1
J has a crystalline lift with κ-labeled Hodge–Tate weights {−sJ,κ, 1} at each

embedding κ : k →֒ Fp. In particular Zτ (J) depends only on the sJ,κ and on ΘJ ;
or, if one likes, only on the expression for the “fake Serre weight” σ(τ)J , whose
definition contains a Sym−1 if J 6∈ Pτ .

As an application, we deduce the following.
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Corollary 1.8 (Corollary 4.19). Suppose that 0 ≤ rκ,1 − rκ,2 ≤ p for all κ, with
not all differences equal to p. The closed substack X

r
red of X2,red whose finite type

points are representations ρ : GK → GL2(Fp) having crystalline lifts with labeled
Hodge–Tate weights {rκ,1, rκ,2} is irreducible.

This result is new in the irregular case. The point is that by Theorem 1.7 this
locus is isomorphic to one of the stacks Zτ (J), and the latter is irreducible by
construction.

Since the closed substack X
r
red in the irregular case has positive codimension in

X2,red, it is reasonable to expect that there are inclusions X
r
red ⊂ X

r′

red for other
collections of Hodge–Tate weights r′. In the final section of the paper, we establish
this expectation in a number of cases. We define three operators θκ, µκ, and νκ on
Hodge types r that are irregular at κ (see Definition 5.1; the first two can be viewed
as analogues of partial theta operators and partial Hasse invariants, as described in
the work of Diamond and Sasaki on geometric Serre weight conjectures ([DS]) and
discussed further in [Wie]. We then establish the following.

Theorem 1.9 (Theorem 5.2). Suppose r′ ∈ {θκ(r), µκ(r), νκ(r)} and assume that r′

remains p-bounded. Then X r
red ⊂ X

r′

red.

As a consequence we deduce that every representation with a crystalline lift of
Hodge type r also has a crystalline lift of Hodge type r′, for r, r′ as in the theorem.

1.3. Outline of the paper. We begin in Section 2 by recalling from [CEGSb]
the definitions of various stacks of Breuil–Kisin modules and étale ϕ-modules with
descent data, and reviewing many of the results from the papers [CEGSa, CEGSb,
CEGSc] that we will need.

In Section 3.1 we analyze the irreducible components of the tamely potentially
Barsotti–Tate Breuil–Kisin moduli stacks Cτ,BT,1 from the point of view of the
shape of a Breuil–Kisin module, as studied in [Bre2, CDM, LLHLM1]. Using this
idea we give a new description of the irreducible components of Cτ,BT,1 with the
advantage that we can characterize all of the Fp-points on each component Cτ (J)
of Cτ,BT,1. This stands in contrast to [CEGSc], where only a dense set of points
are described. As an application, in Section 3.2 we describe the Fp-points of the
stacks Zτ (J). This is a key ingredient in the rest of the paper, and also leads to a
new and purely local proof of the characterization of the irreducible components of
Zdd in terms of crystalline lifts.

In Section 4.1 we introduce the Emerton–Gee stacks to the discussion, and es-
tablish the isomorphism between the stacks X τ,BT and Zτ . One consequence is
the existence of a reduced closed substack Z

r
red of Zdd, for each p-bounded and

non-Steinberg Hodge type r, whose Fp-points are precisely the representations

ρ : GK → GL2(Fp) having a crystalline lift of type r. In Section 4.3 we com-
bine the results of Section 3.1 with results from [GLS1] and combinatorial input
from Section 4.2 to prove that the stacks Zr

red are equal to the stacks Zτ (J) for
suitable choices of τ and J . This establishes Theorem 1.7 and Corollary 1.8.

Finally in Section 5 we prove Theorem 1.9. In fact we give two proofs. One
argument is relatively direct and computational. The other is more geometric, but
also somewhat more involved, making use of the description of the components of
Cτ,BT,1 in terms of shape.



6 BELLOVIN, BORADE, HILADO, KANSAL, LEE, LEVIN, SAVITT, AND WIERSEMA

1.4. Notation and conventions. Let p > 2 be a prime number. Throughout the
paper we fix K/Qp, an unramified extension of Qp of degree f with residue field k.

We also fix an algebraic closure Qp of Qp, with residue field Fp. Our represen-
tations of the Galois group GK will have coefficients in these fields. Let E be a
finite extension of Qp contained in Qp, with ring of integers O, uniformizer ̟, and
residue field F. As usual we will assume that the coefficient field E is “sufficiently
large”, in a sense that we make precise in Section 1.4.2 below.

Since K/Qp is unramified we can (and do) identify the embeddings K →֒ Qp

with embeddings k →֒ Fp. We fix some embedding κ0 : k →֒ Fp and recursively
label the remaining embeddings by elements of Z/fZ by taking κp

i+1 = κi.

1.4.1. Hodge–Tate weights and Serre weights. Throughout this paper we will use no-
tation and conventions as in the series of papers [CEGSa, CEGSb, CEGSc]. Hodge–
Tate weights are normalized so that the cyclotomic character has all Hodge–Tate
weights equal to −1. We normalize local class field theory so that uniformizers
correspond to geometric Frobenius elements.

A Serre weight is an irreducible Fp-representation of GL2(k). Each Serre weight
has the form

σ~t,~s = ⊗
f−1
j=0 (det

tj Symsj k2)⊗k,κj
Fp

for integers tj and integers 0 ≤ sj ≤ p− 1. If we furthermore assume that 0 ≤ tj ≤
p− 1 and not all tj are p− 1, each Serre weight has a unique representation as one
of the σ~t,~s’s.

To each representation ρ : GK → GL2(Fp) one associates a set W (ρ) of Serre
weights. In our conventions, we have σ~t,~s ∈ W (ρ) if and only if ρ has a crystalline

lifts with Hodge–Tate weights {−sj − tj , 1− tj} for the embedding κj (cf. [CEGSc,
Def. A.3]).

1.4.2. Tame types. Throughout the paper we write τ for a non-scalar tame inertial
type IK → GL2(O). Such a representation is of the form τ ≃ η⊕η′, and we say that
τ is a principal series type if η, η′ both extend to characters of GK . Otherwise,
η′ = ηq, and η extends to a character of GL, where L denotes the unramified
quadratic extension of K. In this case we say that τ is a cuspidal type.

Throughout the paper we will often need to handle the principal series and
cuspidal cases separately. We define

f ′ :=

{
f if τ is principal series

2f if τ is cuspidal

and set e′ = pf
′

− 1. Fix a uniformizer π of K and choose π′ such that (π′)e
′

= π.
In the principal series case we define K ′ = K(π′), while in the cuspidal case we
define K ′ = L(π′), so that in either case K ′ is a finite tamely ramified Galois
extension of K with inertial degree f ′ and having the property that τ |IK′ is trivial.

We assume that E is sufficiently large in the sense that all embeddings K ′ →֒ Qp

have image in E.
Write k′ for the residue field of K ′, and let κ′

0 : k′ →֒ Fp be any extension

of κ0 to k′. Recursively label the embeddings k′ →֒ Fp by elements of Z/f ′Z by
taking (κ′

i+1)
p = κ′

i. For all g ∈ GK we set h(g) = g(π′)/π′ ∈ µe′(K
′). Identifying

µe′(K
′) with µe′(k

′), we can then define fundamental characters ωi of level f by

setting ωi = κi ◦ h : IK → F
×

p for each i ∈ Z/fZ (cf. [CEGSc, Lem. 1.4.1] and
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the discussion following). Similarly define fundamental characters ω′
i of level f

′ by

setting ω′
i = κ′

i ◦ h : IK → F
×

p for each i ∈ Z/f ′Z. Let ω̃i : IK → Q
×

p denote the
multiplicative lift of ωi, and similarly for ω̃′

i.
In the cuspidal case, let c ∈ Gal(K ′/K) denote the unique nontrivial element

fixing π′.

1.4.3. Inertial local Langlands and Serre weights. Henniart’s appendix to [BM] as-
sociates a finite dimensional irreducible E-representation σ(τ) of GL2(OK) to each
inertial type τ ; we refer to this association as the inertial local Langlands correspon-
dence. The reduction modulo p of σ(τ) is not well-defined, but its Jordan–Hölder
factors are. As in [CEGSa] we normalize the inertial local Langlands correspon-
dence so that ρ has a potentially Barsotti–Tate lift of τ if and only if at W (ρ)
contains at least one Jordan–Hölder factor of the reduction mod p of σ(τ).

We now give an explicit description of the Jordan–Hölder factors of the reduction
mod p of σ(τ), following the recipe from [CEGSc, Appendix A]. Recall that we
assume τ to be a non-scalar tame type. We define 0 ≤ γi ≤ p− 1 (for i ∈ Z/f ′Z)
to be the unique integers such that

(1.10) η(η′)−1 =

f ′−1∏

i=0

(ω̃′
i)

γi .

Observe in the cuspidal case that γi + γi+f = p− 1.

Definition 1.11. Let us say that a subset J ⊂ Z/f ′Z is a profile if either

• τ is non-scalar principal series, and J is any subset; or
• τ is cuspidal, and for all i we have i ∈ J if and only if i+ f 6∈ J .

For each profile J , we define tuples of integers (sJ,i)i and (tJ,i)i indexed by
Z/f ′Z, as follows.

sJ,i :=

{
p− 1− γi − δJc(i) if i− 1 ∈ J,

γi − δJ (i) if i− 1 6∈ J.
(1.12)

tJ,i :=

{
γi + δJc(i) if i− 1 ∈ J,

0 if i− 1 6∈ J.
(1.13)

Note that sJ,i ∈ [−1, p−1], tJ,i ∈ [0, p], and sJ,i is f -periodic. Define ΘJ : k× → F×

to be the unique character such that

(1.14) ΘJ ◦Nk′/k = η′ ⊗
∏

i∈Z/f ′Z

(κ′
i)

tJ,i .

Here we regard η′ as a character of k′ via the Artin map for K ′, and Nk′/k denotes
the norm map. (It is true, but not obvious, that the right-hand side of (1.14) factors
through Nk′/k.)

Definition 1.15. Define Sτ (J) := {i ∈ Z/fZ | sJ,i = −1} and take Pτ to be the
set of profiles J such that Sτ (J) is empty.

Then for each J ∈ Pτ , we define

σ(τ)J = (ΘJ ◦ det)⊗
⊗

i∈Z/fZ

(SymsJ,i k2)⊗k,κi
Fp.

Theorem 1.16. The Jordan–Hölder factors of the reduction mod p of σ(τ) are
precisely the Serre weights σ(τ)J for J ∈ Pτ .



8 BELLOVIN, BORADE, HILADO, KANSAL, LEE, LEVIN, SAVITT, AND WIERSEMA

1.5. Acknowledgments. This project began at the APAWCollaborative Research
Workshop at the University of Oregon in August 2022. We are grateful to Ellen
Eischen, Maria Fox, Cathy Hsu, and Aaron Pollack for organizing the workshop,
as well as for support from Eischen’s NSF CAREER grant DMS-1751281 and
her NSA MSP conference grant H98230-21-1-0029. The work was completed dur-
ing various visits by six of us to the trimester program “The Arithmetic of the
Langlands Program” at the Hausdorff Insitute for Mathematics, funded by the
Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy – EXC-
2047/1 – 390685813. We thank Frank Calegari, Ana Caraiani, Laurent Fargues,
and Peter Scholze for their efforts organizing the trimester.

We thank Matthew Emerton and Toby Gee for valuable conversations. B.L.
was supported by National Science Foundation grant DMS-1952556 and the Alfred
P. Sloan Foundation. D.S. was supported by NSF grant DMS-1952566. H.W. was
supported by the Herchel Smith Postdoctoral Fellowship Fund, and the Engineering
and Physical Sciences Research Council (EPSRC) grant EP/W001683/1.

2. Stacks of Breuil–Kisin modules and étale ϕ-modules

As we have explained in the introduction, the main objects of study in this paper
are certain stacks Cτ,BT of Breuil–Kisin modules and Zτ of étale ϕ-modules, as well
as the map

Cτ,BT → Zτ

between them. We begin with a brief recollection of the definitions and basic
properties of these objects.

2.1. Breuil–Kisin modules. As in [CEGSc], we will consider Breuil–Kisin mod-
ules with coefficients and descent data. Let S := W (k′)[[u]], and extend the arith-
metic Frobenius on W (k′) (i.e. the homomorphism ϕ : W (k′)→W (k′) induced by
x 7→ xp on k′) to a self-map ϕ of S by setting ϕ(u) = up. We extend the action of
Gal(K ′/K) on W (k′) to S via g(u) = h(g)u.

If A is a p-adically complete Zp-algebra, we set SA := (W (k′) ⊗Zp
A)[[u]] and

extend the actions of ϕ and Gal(K ′/K) A-linearly. Setting v := ue(K′/K), we
define the subring S0

A := (W (k) ⊗Zp
A)[[v]], which is preserved by ϕ but on which

Gal(K ′/K) acts trivially. Let E(u) denote the minimal polynomial of π′ overW (k′).

Definition 2.1. A Breuil–Kisin module with A-coefficients and descent data is a
finite projective SA-module M together with semilinear maps

ϕM : M→M

and

ĝ : M→M, g ∈ Gal(K ′/K).

Write ϕ∗M := S⊗ϕ,SM. We impose the further requirements that the linearization

ΦM : ϕ∗M→M

of ϕM is an isomorphism after inverting E(u), that each ĝ commutes with ϕM,
and that ĝ1 ◦ ĝ2 = ĝ1g2 for all g1, g2 ∈ Gal(K ′/K). We say that the Breuil–Kisin
module M has height at most h if the cokernel of ΦM is killed by E(u)h.

Morphisms of Breuil–Kisin modules are morphisms ofSA-modules that commute
with the actions of ϕ and Gal(K ′/K).
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Recall from Section 1.4 that we have fixed a coefficient field E/Qp with ring of
integers O, uniformizer ̟, and residue field F, and that E is sufficiently large in
the sense that it admits embeddings of the field K ′.

Definition 2.2. For each embedding κ′
i : k

′ →֒ Fp, which we identify with its lift

W (k′) →֒ Qp, there is a corresponding idempotent ei ∈ W (k′) ⊗Zp
O such that

x⊗ 1 and 1⊗ κ′
i(x) have the same action on ei(W (k′)⊗Zp

O).
For any O-algebra A and any A-module M, we set Mi := eiM. In case M is a

Breuil–Kisin module, we write

ΦM,i : ϕ
∗(Mi−1)→Mi

for the morphism induced by ΦM, which we call the i-th partial Frobenius mor-
phism.

We note the following lemma, which is an immediate consequence of [EG1,
Prop. 5.1.9(1)].

Lemma 2.3. Let A be a p-adically complete O-algebra, and let M be a Breuil–
Kisin module with A-coefficients and descent data. Then each Mi is Zariski locally
on Spec(A) free as an A[[u]]-module.

Definition 2.4. Let τ be a tame inertial type, and let A be a p-adically complete O-
algebra. We say that the Breuil–Kisin module M with A-coefficients and descent
data is of type τ provided that Zariski locally on Spec(A) there is an I(K ′/K)-
equivariant isomorphism Mi/uMi

∼= A⊗O τ for each i.

Definition 2.5. We define Cτ,BT to be the stack over Spf(O) which associates
to any O/̟a-algebra A the groupoid of rank 2 Breuil–Kisin modules with A-
coefficients and descent data, of type τ , and of height at most 1, and additionally
satisfying the Kottwitz-type strong determinant condition of [CEGSb, §4.2].

We define Cdd,BT to be the union of the stacks Cτ,BT for varying τ (including
scalar types), and further write Cdd,BT,1 and Cdd,BT,1 for the special fibers Cdd,BT×O

F and Cτ,BT ×O F respectively.

Remark 2.6. We do not write out the strong determinant condition explicitly,
because we will not need it. However, we recall from [CEGSb, Lem 4.2.16] that
this condition guarantees that the Spf(O)-points of Cτ,BT correspond to poten-
tially Barsotti–Tate representations with Hodge–Tate weights {0, 1} (rather than
contained in {0, 1}) at each embedding.

Proposition 2.7. Suppose that A is a reduced F-algebra and let M be a rank 2
Breuil–Kisin module with A-coefficients and descent data, of type τ , and of height
at most 1. Then M is an object of Cτ,BT(A) (i.e., it satisfies the strong determinant
condition) if and only if locally on Spec(A) the determinant of each partial Frobenius

maps ΦM,i, with respect to some (hence any) choice of bases, lies in ue′ · A[[u]]×.

Proof. In case A = F′ is a finite extension of F, the ‘only if’ direction is given
by [CEGSb, Lem. 4.2.11(2)]. The converse to [CEGSb, Lem. 4.2.11(2)] is false in
general, because the type τ in that reference is allowed to be mixed (cf. [CEGSb,
Def. 3.3.2]). Since we assume here that the type is unmixed, the A[[v]]-determinants
of the maps ΦM,i,ξ (the ξ-isotypic part of ΦM,i for some character ξ of I(K ′/K), in
the notation of [CEGSb]) are all equal up to units, and indeed equal up to units to
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the A[[u]]-determinant of ΦM,i; and then the argument for [CEGSb, Lem. 4.2.11(2)]
runs in the reverse direction as well.

For general coefficients, we reduce immediately to the case where A has finite
type as an F-algebra. Since A is then both reduced and Jacobson, the strong
determinant condition for M is equivalent to the strong determinant condition for
the base change of M to each closed point of A. The result then follows from the
case F′/F finite of the previous paragraph. �

The following results are proved in [CEGSb, Cor. 3.1.8, Cor. 4.5.3, Prop. 5.2.21]
and [CEGSc, Thm. 5.4.3].

Theorem 2.8. The stacks Cdd,BT,1, and Cτ,BT,1 are algebraic stacks of finite type
over O, while the stacks Cdd,BT and Cτ,BT are ̟-adic formal algebraic stacks. More-
over:

(1) Cτ,BT is analytically normal, Cohen–Macaulay, and flat over O.
(2) The stacks Cdd,BT,1 and Cτ,BT,1 are equidimensional of dimension [K : Qp].
(3) The special fibres Cdd,BT,1 and Cτ,BT,1 are reduced.
(4) If τ is non-scalar, then Cτ,1 has 2f irreducible components Cτ (J), in bijec-

tion with the set of profiles J .

2.2. Étale ϕ-modules.

Definition 2.9. If A is a Z/paZ-algebra for some a ≥ 1, then a weak étale ϕ-module
with A-coefficients for K ′ is a finitely generated SA[1/u]-module M together with
a semilinear morphism

ϕM : M →M

such that the linearization

ΦM : ϕ∗M := S⊗ϕ,S M →M

is an isomorphism. Weak étale modules with A-coefficients for K are defined iden-
tically, but with S0

A[1/v] in place of SA[1/u].
A weak étale ϕ-module with A-coefficients and descent data from K ′ to K is a

weak étale ϕ-module with A-coefficients for K ′ together with additional semilinear
morphisms

ĝ : M →M, g ∈ Gal(K ′/K)

such that each ĝ commutes with ϕM , and ĝ1 ◦ ĝ2 = ĝ1g2 for all g1, g2 ∈ Gal(K ′/K).
An étale ϕ-module is a weak étale ϕ-module such that M is furthermore projec-

tive as an SA[1/u]-module (resp. as an S0
A[1/v]-module, for étale ϕ-modules for

K).

Definition 2.10. We define Rdd to be the stack over Spf(O) which associates to
any O/̟a-algebra A the groupoid of rank 2 étale ϕ modules with A-coefficients
and descent data.

We will also sometimes want to make use of étale ϕ-modules without descent data.
Write R2 for the Spf(O)-stack of rank 2 étale ϕ-modules for K (without descent
data). The functor R2 → Rdd sending M  M ⊗S0[1/v] S[1/u] is an equivalence,
with inverse given by taking Gal(K ′/K)-invariants; cf. [EG2, Cor. 2.3.21].

If M is a Breuil–Kisin module with A-coefficients and descent data, then evi-
dently M[1/u] is an étale ϕ-module with A coefficients and descent data. Inverting
u thus defines morphisms

(2.11) Cdd,BT →Rdd, Cτ,BT →Rdd.
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Definition 2.12. We define Zdd and Zτ to be the scheme-theoretic images (in the
sense of [EG1]) of the morphisms given in (2.11). We further define Zdd,1, Zτ,1,
and Zτ (J) for each profile J to be the scheme-theoretic images of Cdd,BT,1 Cτ,BT,1,
Cτ (J) under the morphisms of (2.11).

Note that Zdd,1 and Zτ,1 are reduced as a consequence of Theorem 2.8(3), but
need not be (and in general presumably will not be) the special fibers of Zdd and Zτ .

We recall some of the important properties of these stacks as established in
[CEGSb, Thm. 5.1.2, Prop. 5.1.4, Lem. 5.1.8, Prop. 5.2.20] and [CEGSa, Thm 6.2].

Theorem 2.13. The stacks Zdd,1 and Zτ,1 are algebraic stacks of finite type
over O, while the stacks Zdd and Zτ are ̟-adic formal algebraic stacks. More-
over:

(1) The stacks Zdd,1 and Zτ,1 are equidimensional of dimension [K : Qp].
(2) The stacks Zdd,1 and Zτ,1 are reduced.
(3) The irreducible components Z(σ) of Zdd,1 are in bijection with non-Steinberg

Serre weights σ. Furthermore, for each finite extension F′/F the F′-points
of Z(σ) are precisely the Galois representations ρ : GK → GL2(F

′) having
σ as a Serre weight.

(4) If τ is non-scalar, then Zτ (J) = Z(σ(τ)J ) for each J ∈ Pτ , and these are
precisely the irreducible components of Zτ,1.

2.3. Galois representations. We fix a compatible sequence {πn} of pnth roots
of π; since gcd(e(K ′/K), p) = 1, this determines a compatible sequence {π′

n} of

pnth roots of π′ such that (π′
n)

e(K′/K) = πn. Let K∞ := ∪nK(πn) and let K ′
∞ :=

∪nK ′(π′
n). Then we identify Gal(K ′/K) and Gal(K ′

∞/K∞).
By Fontaine’s theory of the field of norms, if |A| <∞ then the category of weak

étale ϕ-modules with A-coefficients is equivalent to the category ofA-representations
of GK′

∞
. There are various ways to write down such a functor, and in particular we

will need to compare the functors to Galois representations of [CEGSc] and [GLS1].
For this reason we now recall the explicit descriptions of these functors.

Let OE denote the p-adic completion of S
[
1
u

]
; it is a discrete valuation ring with

uniformizer p and residue field k′((u)). We let E denote the field of fractions of OE .
Note that the actions of ϕ and Gal(K ′/K) extend naturally to OE and E .

Fix an algebraic closure K of K with ring of integers OK , and an embedding

K ′
∞ →֒ K, and set R := lim

←−x 7→xp
OK . Write π := (πn)n, π

′ := (π′
n) ∈ R and write

[π], [π′] ∈W (R) for their multiplicative lifts in the Witt vectors W (R).
We may define a ϕ-equivariant inclusion S →֒ W (R) by sending u 7→ [π′], and

this restricts to a ϕ-equivariant inclusion S0 →֒ W (R) sending v to [π]. This
injection extends to inclusions

OE →֒W (Frac(R))

and

E →֒ W (Frac(R))
[
1
p

]
.

The residue field Frac(R) of W (Frac(R)) contains a separable closure k′((u))sep

of the residue field of OE , and this extension of residue fields corresponds to an

unramified extension Enr of E . We let Ênr denote its p-adic completion, and we let

O
Ênr ⊂ Ênr denote its (p-adically complete) ring of integers.
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Definition 2.14. We define the covariant functor T from weak étale ϕ-modules
with A-coefficients to Galois representations, given by

T (M) :=
(
O

Ênr ⊗S[1/u] M
)ϕ=1

.

If M has descent data from K ′ to K, this is actually a representation of GK∞
be-

causeGK∞
acts on bothO

Ênr andM (the latter through its quotient Gal(K ′
∞/K∞) ∼=

Gal(K ′/K)). Equivalently, since [K ′ : K] is prime to p we have that M0 :=

MGal(K′/K) is an étale ϕ-module with A-coefficients for K, and the natural map

S[1/u]⊗S0[1/v] M
0 →M

is an isomorphism. Write

TK(M0) :=
(
O

Ênr ⊗S0[1/v] M
0
)ϕ=1

for the analogous functor on weak étale ϕ-modules with A coefficients for K, with-
out descent data. Then TK(M0) ∼= T (M) and the right-hand side becomes a
representation of GK∞

by transport of structure.

Definition 2.15. There are further (contravariant) functors T ∗ on weak étale
ϕ-modules with A-coefficients (with descent data from K ′ to K, or for K, respec-
tively), defined as follows.

T ∗(M) := HomS[1/u],ϕ

(
M, Ênr/O

Ênr

)

T ∗
K(M0) := HomS0[1/v],ϕ

(
M0, Ênr/O

Ênr

)
.

These are naturally an A-linear representation ofGK∞
, and whenM0 = MGal(K′/K)

then evidently T ∗(M) ∼= T ∗
K(M0). When pre-composed with the functor from

Breuil–Kisin modules to étale ϕ-modules, T ∗
K is the functor used in [GLS1] (and

denoted TS in §3 of that reference).

If A is a Z/paZ-algebra and M is a Breuil–Kisin module with A-coefficients and
descent data, so that M[1/u] is an étale ϕ-module with A-coefficients and descent
data, then we will freely write

T (M) := T (M[1/u]), T ∗(M) := T ∗(M[1/u]).

Lemma 2.16. Suppose that A is a finite extension of Fp and M is an étale ϕ-

module with A-coefficients and descent data, and set M0 = MGal(K′/K). Let

M∨ := HomSA[1/u](M,SA[1/u])

(M0)∨ := HomS0
A[1/v](M

0,S0
A[1/v])

be the (A-linear) dual ϕ-modules with coefficients (and descent data, in the first
case). Then we have a functorial isomorphism

T (M) ∼= T ∗
K((M0)∨)

as representations of GK∞
.

Remark 2.17. The Frobenius onM∨ is defined by the formula (ϕf)(
∑

i siϕ(mi)) =∑
i siϕ(f(mi)) for any si ∈ SA[1/u] and mi ∈M ; and similarly for (M0)∨.
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Proof. Since M is a finite projective A ⊗ OE = SA[1/u]-module, we have M ∼=
(M∨)∨ and (M0)∨ ∼= (M∨)0. By the discussion in the preceding paragraphs, we
can therefore reduce to proving that

T (M∨) ∼= T ∗(M).

Furthermore, we have a natural isomorphism

Ênr/O
Ênr ⊗OE

M∨ ∼
−→ HomOE

(M, Ênr/O
Ênr)(2.18)

which is ϕ- and GK∞
-equivariant. Since M (and hence M∨) is p-torsion, the left

side of (2.18) is isomorphic to

O
Ênr ⊗OE

M∨

and its ϕ-invariant subspace is simply T (M∨). On the other hand, the ϕ-invariants
of the right side of (2.18) are T ∗(M) by definition, so we are done. �

3. Points of Cτ (J) and Zτ (J)

In [CEGSc] the irreducible components of the stack Cτ,BT,1 are studied by ana-
lyzing a morphism from Cτ,BT to a certain auxiliary stack Gη (the “gauge stack”).
Our goal in the first part of this section is to explain another approach to describing
the components of Cτ,BT,1, in terms of the notion of shape, and then to relate this
description to the one from [CEGSc]. The advantage of our approach is that we
are able to give a complete description of all of the points of each component of
Cτ,BT,1, whereas [CEGSc] only describes a dense set of points; see Corollary 3.17.
As an application, in Section 3.2 we are able to characterize the F′-valued points
of the stacks Zτ (J) for each finite extension F′/F; see Theorem 3.19.

3.1. Irreducible components via shape. Shapes for rank 2 Breuil–Kisin mod-
ules with tame descent were introduced by Breuil in [Bre2], further developed by
[CDM] to study tamely Barsotti-Tate deformation rings (and called genre there),
and eventually generalized to higher dimensions in [LLHLM1] and [LLHLM2]. Each
field-valued point of Cτ,BT,1 has an associated shape which describes the divisibility
by u of certain entries in the matrices of the partial Frobenius maps.

Throughout this section we fix a non-scalar tame inertial type τ = η ⊕ η′. We
will need the following notation. For each i, we let ki, k

′
i ∈ [0, pf

′

− 1) be such that

η = (ω̃′
i)

ki and η′ = (ω̃′
i)

k′

i . Let γi ∈ [0, p− 1] be the unique integers such that

ηη′−1 =
∏

i∈Z/f ′Z

(ω̃′
i)

γi .

Note that we are implicitly considering η and η′ as an ordered pair of characters.
The formula

(3.1) p[k′i−1 − ki−1]− [k′i − ki] = (pf
′

− 1)(p− 1− γi)

is often useful, where for any a ∈ Z/f ′Z, [a] denotes the unique element of [0, pf
′

−1)

such that [a] is congruent to a mod pf
′

− 1. For brevity we will shorten [ki − k′i]
and [k′i−ki] to ℓi, ℓ

′
i respectively. Since the type τ is nonscalar, ℓi and ℓ′i are always

both nonzero, and we have ℓi + ℓ′i = pf
′

− 1.
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Definition 3.2. Suppose that A is an F-algebra and let M be an object of
Cτ,BT,1(A). By Lemma 2.3 and the hypothesis that I(K ′/K) has order prime
to p, Zariski locally on A one can choose a basis βi = (ei, fi) of Mi such that
Gal(K ′/K) acts on ei, fi via η, η′ respectively. Furthermore, in the cuspidal case
we can and do suppose that c(ei) = fi+f and c(fi) = ei+f . As in [LLHLM1], we
call β = (βi)i∈Z/f ′Z an eigenbasis of M.

Definition 3.3. If the étale ϕ-module M is free and has basis β = (βi), then the
matrix of the partial Frobenius map ΦM,i with respect to the basis β is the matrix
of ΦM,i with respect to the basis (1⊗ βi−1) of ϕ

∗Mi−1 and the basis βi of Mi. We
will also use the same terminology in the context of a Breuil–Kisin module M and
a basis for M[1/u] (which need not be a basis for M).

Suppose that M has an eigenbasis β, and let Cβ,i denote the matrix of the partial
Frobenius map ΦM,i with respect to β. Since ΦM,i commutes with the descent data
we find that

(3.4) Cβ,i =

(
ai uℓ′ibi

uℓici di

)

for some ai, bi, ci, di ∈ A[[v]], meaning that ΦM,i(1 ⊗ ei−1) = aiei + uℓicifi and
similarly for ΦM,i(1⊗ fi−1). In the cuspidal case we additionally compute that

(3.5) Cβ,i+f = Ad

(
0 1
1 0

)
(Cβ,i)

where AdA(B) = ABA−1.
Any change of basis from an eigenbasis β to another eigenbasis β′ is similarly

encoded by an f ′-tuple of matrices of the form

Ui =

(
xi uℓ′iyi

uℓizi wi

)

so that β′
i = βi · Ui. The matrix Ui has xi, yi, zi, wi in A[[v]] and determinant in

A[[v]]×, and in the cuspidal case one again has

Ui+f = Ad

(
0 1
1 0

)
(Ui).

Under this change of basis, the matrices Cβ,i change by the formula

Cβ′,i = U−1
i · Cβ,i · ϕ(Ui−1).

Observe that the matrices Ui are diagonal modulo u, so that the diagonal entries
xi, wi must be units in A[[v]]. In particular whether or not the entries ai, di of Cβ,i

are divisible by v is unchanged under change of eigenbasis. We can therefore make
the following definition.

Definition 3.6. Suppose that M has an eigenbasis. We define the shape of M at
i to be

• Iη if v | ai and v ∤ di,
• Iη′ if v ∤ ai and v | di, and
• II if v | ai, di both.

The argument in Lemma 3.8 below proves that if M has an eigenbasis and A is
a domain, then M has a shape; but in general v may divide neither ai nor di, in
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which case the shape of M at i does not exist. The shape of M, if it exists, is the
f ′-tuple whose i-th entry is the shape of M at i.

In the cuspidal case we observe from (3.5) that the shape of M at i is Iη if and
only if the shape of M at i + f is Iη′ , and the shape of M at i is II if and only if
the shape of M at i+ f is also II.

We remark that having shape Iη or II (Zariski locally) at i is a closed condition,
and similarly for having shape Iη′ or II at i; and their intersection is the condition
of having shape II at i. Having shape Iη (respectively Iη′) is not a closed condition,
but it is locally closed.

Definition 3.7. Let J ⊂ Z/f ′Z be a profile. We define Lτ (J) ⊂ Cτ,BT,1 to be the
substack such that an object M ∈ Cτ,BT,1(A) lies in Lτ (J)(A) if and only if Zariski
locally on A the Breuil–Kisin module M has shape Iη or II when i ∈ J , and shape
Iη′ or II when i 6∈ J . The inclusion Lτ (J) ⊂ Cτ,BT,1 is a closed immersion (since
the condition of being a closed immersion is checkable locally on A).

Lemma 3.8. We have |Cτ,BT,1| =
⋃

J |L
τ (J)|, the union taken over profiles J .

Proof. Suppose that A is a field and M ∈ Cτ,BT,1(A). The Breuil–Kisin module
M has an eigenbasis β, and Proposition 2.7 implies detCβ,i ∈ vA[[u]]× for each i.

Comparing with (3.4) and recalling that uℓi · uℓ′i = v we find in particular that
v | aidi as elements of A[[v]]. We conclude that either v | ai or v | di. Therefore M

has a shape, and lies in Lτ (J)(A) for some J (possibly more than one). �

In some computations (such as the one upcoming), rather than working with
the matrices of ΦM,i with respect to an eigenbasis, it is more convenient to write
the matrices of ΦM,i in terms of bases for the η′-eigenspaces of ϕ∗Mi−1 and Mi.
Concretely, if β = (βi) is an eigenbasis with βi = (ei, fi), then the η′-eigenspace

of Mi has a basis given by (uℓ′iei, fi), while that of ϕ∗Mi−1 has a basis given by

(uℓ′i ⊗ ei−1, 1⊗ fi−1). The matrix of ΦM,i in terms of these bases is

(3.9) Aβ,i := Ad

(
u−ℓ′i 0
0 1

)
(Cβ,i) =

(
ai bi
vci di

)
.

Note that this is not the same as “the matrix with respect to the basis (uℓ′iei, fi)i”,

since 1 ⊗ uℓ′i−1ei 6= uℓ′i ⊗ ei−1 in general. These matrices have entries in A[[v]]; for
that reason, this process is sometimes called “removing the descent data.” In the
cuspidal case, one checks using ℓ′i + ℓ′i+f = pf

′

− 1 that

(3.10) Aβ,i+f := Ad

(
0 1
v 0

)
Aβ,i =

(
di ci
vbi ai

)
.

Setting Ii = Ad

(
u−ℓ′i 0
0 1

)
(Ui) =

(
xi yi
vzi wi

)
, we get the change of basis for-

mula

(3.11) Aβ′,i = I−1
i Aβ,i Ad

(
vp−1−γi 0

0 1

)
(ϕ(Ii−1)).

using (3.1). In the cuspidal case the matrices Ii and Ii+f are related by the formula

(3.12) Ii+f := Ad

(
0 1
v 0

)
Ii =

(
wi zi
vyi xi

)
.
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Let L+GL2 denote the positive loop group over F with variable v, i.e., the group
ind-scheme whose A-points are L+ GL2(A) = GL2(A[[v]]). Write Cτ,1 for the F-stack
of rank 2 Breuil–Kisin modules with coefficients and descent data, of type τ , and
of height at most 1; in other words, all of the defining conditions of Cτ,BT,1 except
the strong determinant condition. There is a map

(3.13) (L+ GL2)
f → Cτ,1

given by sending the f -tuple of matrices Bi ∈ GL2(A) for 0 ≤ i < f to the Breuil–
Kisin module M with Mi = A[[u]]ei ⊕ A[[u]]fi for i ∈ Z/f ′Z, an eigenbasis β with
βi = (ei, fi) for i ∈ Z/f ′Z, and partial Frobenius maps ΦM,i having matrices Aβ,i

for 0 ≤ i < f defined by the formulas

(3.14) Aβ,i =





Bi

(
v 0
0 1

)
if i ∈ J

(
1 0
0 v

)
Bi if i 6∈ J.

In the cuspidal case this means that the matrices Aβ,i+f for 0 ≤ i < f are deter-
mined in terms of Aβ,i by the formula (3.10).

Lemma 3.15. The map of (3.13) factors through the closed immersion Lτ (J) ⊂
Cτ,1 to give a surjective map

π : (L+ GL2)
f → Lτ (J).

Furthermore Lτ (J) is reduced and irreducible.

Proof. Since the loop group L+GL2 is reduced and the determinant of each matrix
Aβ,i in (3.14) lies in vA[[v[]×, it follows from Proposition 2.7 that the map (3.13)
factors through the closed immersion Cτ,BT,1 ⊂ Cτ,1. Since by construction the
upper-left entry of Aβ,i is divisible by v if i ∈ J , and similarly for the bottom-right
entry if i 6∈ J , the image in fact lies in Lτ (J). We therefore obtain the claimed
factorization π. In fact since L+ GL2 is reduced, by [Sta, Tag 050B] the map π must
factor through the closed immersion Lτ (J)red ⊂ Lτ (J); here Lτ (J)red denotes the
underlying reduced substack of Lτ (J).

Let A be a ring and suppose that M ∈ Lτ (J)(A) admits an eigenbasis β. For
each i ∈ J we have v | ai, say ai = va′i, and Aβ,i has the factorization

Aβ,i = Bi

(
v 0
0 1

)

with Bi =

(
a′i bi
ci di

)
; and analogously when i 6∈ J . It follows that M is in the image

of π. When A is a field (or indeed any local ring), every M ∈ Lτ (J)(A) admits
an eigenbasis, and therefore is in the image of π; this establishes the surjectivity
of π. The irreducibility of Lτ (J) now follows from the surjectivity of π and the
irreducibility of (L+ GL2)

f .
Now consider any morphism X → Lτ (J) with X a scheme over F. Cover X by

affine opens SpecA such that the induced object of Lτ (J)(A) admits an eigenbasis.
By the argument in the previous paragraph, each of the maps SpecA → Lτ (J)
lifts through π, and therefore factors through Lτ (J)red ⊂ Lτ (J). It follows that
the morphism X → Lτ (J) itself factors through Lτ (J)red. Thus Lτ (J)(X) =
Lτ (J)red(X) for all schemes X ; it follows that Lτ (J) = Lτ (J)red and therefore
Lτ (J) is reduced. �

https://stacks.math.columbia.edu/tag/050B
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Theorem 3.16. We have Lτ (J) = Cτ (J) for all profiles J .

Proof. We have just proved that the stacks Lτ (J) are reduced and irreducible, and
by Lemma 3.8 their union is Cτ,BT,1. On the other hand, there are 2f stacks Lτ (J),
and Cτ,BT,1 has 2f irreducible components. It follows that each Lτ (J) must be a
different one of the irreducible components.

By [CEGSc, Prop. 5.4.2], the union ∪J∋i Cτ (J) (the union over profiles J contain-
ing i) is the zero locus in Cτ,BT,1 of the η-isotypic part of ΦM,i : ϕ

∗(M/uM)i−1 →
(M/uM)i. In the eigenbasis β, this map is multiplication by ai (mod u). Since
ai ∈ A[[v]], we have u | ai if and only if v | ai. Therefore ∪J∋i Cτ (J) = ∪J∋i Lτ (J).
Since this equality holds for each i we deduce that Lτ (J) = Cτ (J). �

Corollary 3.17. If A is an F-algebra, then Zariski locally on A, Cτ (J)(A) is
precisely the groupoid of Breuil–Kisin modules with partial Frobenius matrices Aβ,i

of the form

Bi

(
v 0
0 1

)
if i ∈ J, and

(
1 0
0 v

)
Bi if i 6∈ J,

for some Bi ∈ GL2(A[[v]]).

3.2. Finite type points of Zτ (J). As an application of Corollary 3.17 we are able
to give a direct description of the finite type points of Zτ (J), by which we mean the
points of Zτ (J)(F′) for each finite extension F′/F. Recall from Section 1.4.3 that
to the pair τ and J we have associated a tuple of integers sJ,i and a character ΘJ ,
which is identified via the Artin map with the character ΘJ : k× → F× such that

(3.18) ΘJ ◦Nk′/k = η′ ⊗
∏

i∈Z/f ′Z

(κ′
i)

tJ,i ;

see equations (1.12) and (1.14). Write

ΘJ =

f−1∏

i=0

ω
θJ,i
i

for some integers θJ,i. In the cuspidal case by definition we have θJ,i+f = θJ,i for
all i. The main result of this section is the following.

Theorem 3.19. Suppose F′/F is a finite extension and let M be an étale-ϕ module
with F′-coefficients and descent data from K ′ to K. Write M0 for the Gal(K ′/K)-
invariants of M . Then M is a finite type point of Zτ (J) if and only if (M0)i has
a basis xi, yi for each i ∈ Z/fZ such that the partial Frobenius maps ΦM0,i with
respect to the basis (xi, yi)i∈Z/fZ have matrices

Bi

(
v 0
0 v−sJ,i

)
v−θJ,i

for matrices Bi ∈ GL2(F
′[[v]]).

Remark 3.20. In the statement of the proposition, the ordering of the diagonal
elements of the diagonal matrix is irrelevant, in the sense that they can be swapped
by a suitable change of basis. Specifically, if J ′ ⊂ Z/fZ is any subset, then replac-
ing (xi−1, yi−1) with (yi−1, xi−1) for each i ∈ J ′ swaps the order of the diagonal
elements, at the cost of multiplying Bi−1 and Bi on the left and right by ( 0 1

1 0 )
respectively for each i ∈ J ′.
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Proof of Theorem 3.19. The stack Zτ (J) is the scheme-theoretic image of the mor-
phism Cτ (J)→Rdd,1; this morphism is proper because it is the composition of the
closed immersion Cτ (J) → Cτ,BT,1 with the proper morphism Cτ,BT,1 → Rdd,1. It
follows from [EG1, Lem 3.2.14] that the F′-points of Zτ (J) are precisely the F′-
points of Rdd,1 whose fiber in Cτ (J) → Rdd,1 is nonempty; in other words, which
have a eigenbasis β = (βi)i such that the partial Frobenius maps ΦM,i have exactly
the form given in Corollary 3.17, i.e., such that the matrices Aβ,i are

B′
i

(
v 0
0 1

)
if i ∈ J, and

(
1 0
0 v

)
B′

i if i 6∈ J.

for some B′
i ∈ GL2(F

′[[v]]). Note that these matrices can be written in a single
formula as

(3.21) Aβ,i =

(
1 0
0 vδJc (i)

)
B′

i

(
vδJ (i) 0
0 1

)
.

Before continuing the proof we need to introduce some additional notation. Write

η′ =
∏f ′−1

i=0 (ω̃′
i)

µi for integers µi ∈ [0, p − 1]. Then k′i =
∑f ′−1

j=0 pf
′−1−jµi+j+1 for

all i, and

(3.22) pk′i−1 − k′i = (pf
′

− 1)µi.

Next, the equality

ΘJ =

f ′−1∏

i=0

(ω′
i)

θJ,i =

f ′−1∏

i=0

(ω′
i)

µi+tJ,i

implies the existence of integers νi such that

(3.23) θJ,i = µi + tJ,i + νi − pνi−1

for all i. Now for each i ∈ Z/f ′Z we define a basis (mi, ni) of the inertial invariants

M I(K′/K) by the formula

(mi ni) = (ei fi)

(
uℓ′i 0

0 vδJc (i)

)
u−k′

iv−1+νi .

Then one computes directly using equations (3.9), (3.21), (3.1), (3.22), and (3.23)
that the matrix of ΦM,i with respect to the basis (mi, ni)i∈Z/f ′Z is

B′
i

(
vδJ (i)−γi+tJi 0

0 vpδJc (i−1)−(p−1)+tJ,i

)
v−θJ,i .

Substituting the definition of tJ,i, we obtain

B′
i

(
v 0
0 v−sJ,i

)
v−θJ,i if i− 1 ∈ J, B′

i

(
v−sJ,i 0
0 v

)
v−θJ,i if i− 1 6∈ J.

Finally, defining (xi−1, yi−1) = (mi−1, ni−1) if i−1 ∈ J and (xi−1, yi−1) = (ni−1,mi−1)
if i − 1 6∈ J , then by Remark 3.20 the matrix of ΦM,i with respect to the basis
(xi, yi)i∈Z/f ′Z is

Bi

(
v 0
0 v−sJ,i

)
v−θJ,i

for suitable Bi.
In the principal series case, where I(K ′/K) = Gal(K ′/K), this completes the

proof of the ‘only if’ direction of the proposition, and the ‘if’ direction follows on
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observing that our change of basis from the eigenbasis (ei, fi)i of M to the basis
(xi, yi)i of M

0 is reversible and depends only on the initial data of τ and J .
For the remainder of the proof, we assume that τ is cuspidal. To compute

M0 from M I(K′/K) we take further invariants under the element c ∈ Gal(K ′/K)
that fixes π′ and lifts the Frobenius element in Gal(K ′/K)/I(K ′/K) = Gal(k′/k).
Another direct computation, recalling that c(ei, fi) = (fi+f , ei+f ), that ki = k′i+f ,

and that δJ(i) = δJc(i + f), shows that

(3.24) c(mi ni) = vξi(ni+f mi+f )

where for each i, we have

ξi =
ℓ′i+ki−k′

i

pf′
−1

+ νi − νi+f − δJ (i).

But using (3.1), (3.22) and (3.23), we can compute

pξi−1 − ξi = (p− 1− γi)− µi + µi+f + (µi + tJ,i − θJ,i)

− (µi+f + tJ,i+f − θJ,i+f )− pδJ(i − 1) + δJ(i).

Since θJ,i = θJ,i+f , this simplifies to

pξi−1 − ξi = tJ,i − tJ,i+f + (p− 1− γi)− pδJ(i− 1) + δJ(i)

and substituting the definition of tJ,i (and recalling that i − 1 ∈ J if and only if
i+ f − 1 6∈ J), we conclude finally that

pξi−1 − ξi = 0

for all i. But then iteratively we have ξi = pf
′

ξi for all i, and so in fact ξi = 0, and
(3.24) simplifies to

(3.25) c(mi ni) = (ni+f mi+f )

for all i. Therefore (mi + ni+f ,mi+f + ni) are Gal(K ′/K)-invariant, and are a
basis for M0

i . Furthermore the commutation relation between ϕ and c implies
that if Xi is the matrix of ΦM,i with respect to the basis (mi, ni)i∈Z/f ′Z then

Xi+f = Ad

(
0 1
1 0

)
(Xi).

Now we can conclude just as in the principal series case: for each integer 0 ≤ i < f
we define (xi, yi) = (mi+ni+f ,mi+f+ni) if i−1 ∈ J and (xi, yi) = (mi+f+ni,mi+
ni+f ) if i− 1 6∈ J , and then the matrix of ΦM0

i
with respect to (xi, yi)i=0,...,f−1 is

Bi

(
v 0
0 v−sJ,i

)
v−θJ,i

for suitable Bi. �

Remark 3.26. Readers who are familiar with the article [GLS1] will recognize
that Theorem 3.19 has a reinterpretation in terms of crystalline lifts. This will be
discussed in the following section at Theorem 4.22, Remark 4.24, and Corollary 4.25.
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4. Irregular loci

We are now ready to prove many of our main results about irregular loci in the
Emerton–Gee stacks. We begin in Section 4.1 by proving the isomorphism between
the stacks X τ,BT and Zτ . This establishes the existence of substacks Z

r
red of Zdd

whose finite type points are Galois representations having crystalline lifts of Hodge
type r, whenever r is p-bounded and irregular (cf. Definition 4.7). There is a Hodge
type associated to each pair (τ, J), and in Section 4.2 we prove the combinatorial
fact that each p-bounded and irregular Hodge type arises from such a pair. In
Section 4.3 we use this combinatorial input along with the results of Section 3.1 to
prove that the stacks Z

r
red are equal to the stacks Zτ (J) for suitable choices of τ

and J .

4.1. A comparison of [CEGSb] and [EG2] stacks. In this subsection only, we
allow K/Qp to be an arbitrary finite extension (i.e., not necessarily unramified).
Our goal in this subsection is to establish that the stack Zτ is isomorphic to the
Emerton–Gee stack X τ,BT of potentially Barsotti–Tate representations of type τ .
For this, we need to begin with a few recollections from [EG2].

Let X2 be the Emerton–Gee stack of rank 2 étale (ϕ,Γ)-modules over K with O-
algebra coefficients, i.e., the d = 2 case of the stack Xd discussed in the introduction.
As before we writeR2 for the Spf(O)-stack of rank 2 étale ϕ-modules forK (without
descent data). We recall from [EG2, Thm. 3.7.2] that there is a morphism

f : X2 →R2

such that the map X2(A)→R2(A), for each complete local NoetherianO-algebraA,
is given by restriction from GK to GK∞

on the corresponding Galois representations.
We emphasize that despite the notation, the map f is not simply “forgetting Γ”,
because the (ϕ,Γ)-modules of [EG2] are cyclotomic, whereas the étale ϕ-modules
of R2 are Kummer (following the terminology of [EG2, Examples 2.1.2–2.1.3]).

Emerton and Gee construct substacks of X2 which may be regarded as stacks of
potentially crystalline representations with specified inertial and Hodge types. For
our purposes we make the following definition.

Definition 4.1. AHodge type of rank d is a tuple of integers r = {rκ,j}κ:K →֒E,1≤j≤d

with rκ,1 ≥ · · · ≥ rκ,d for all i.

The integers rκ,i should be thought of as being the κ-labeled Hodge–Tate weights
of a d-dimensional representation of GK . When K/Qp is unramified and we have
indexed the embeddings κi : K →֒ E by i ∈ Z/fZ, we will generally write ri,j in
place of rκi,j .

For each inertial type τ and Hodge type r of rank 2, Theorem 4.8.12 of [EG2]
guarantees the existence of a closed substack X

crys,τ,r
2 of X2 that is a p-adic formal

algebraic stack, flat over O, such that X
crys,τ,r
2 (A) for each finite flat O-algebra A is

the subgroupoid of potentially crystalline GK -representations having inertial type
τ and Hodge–Tate weights r.

Let BT denote the Hodge type r with (rκ,1, rκ,2) = (1, 0) for all κ, and let triv
denote the trivial inertial type. For brevity will write X τ,BT and X r in place of

X crys,τ,BT
2 and X

crys,triv,r
2 respectively, and we will write X τ,BT

red and X
r
red for their

underlying reduced substacks. By [EG2, Thm. 4.8.12], the finite type points of
X

r
red are precisely the mod p representations with crystalline lifts of Hodge–Tate

weights r.
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By [EG2, Thm. 4.8.14] the stack X τ,BT
red is a union of irreducible components of

X2,red, and similarly for X
r
red provided that r is regular; however, if r is irregular,

then X r
red has codimension equal to the number of elements i ∈ Z/fZ with ri,1 =

ri,2.
For a local Artinian O-algebra with finite residue field, let Repfl,K′/K(A) denote

the category of A-representations of GK that are potentially finite flat and become
finite flat over K ′. Let RepGK∞

(A) denote the category of finite A-representations
of GK∞

.

Lemma 4.2. Let A be a local Artinian O-algebra with finite residue field, and K ′/K
any tamely ramified finite extension. The functor Repfl,K′/K(A) → RepGK∞

(A)
given by restriction from GK-representations to GK∞

-representations is fully faith-
ful.

Proof. For finite flat representations (as opposed to potentially finite flat), the
lemma is now standard; see for example [Bre1, Thm. 3.4.3].

In the general case, let V,W be objects of Repfl,K′/K(A), and let f : V →W be
an A-linear map which is GK∞

-equivariant. We need to prove that f is actually GK -
equivariant. Since f is GK′

∞
-equivariant, by the finite flat case it is GK′ -equivariant.

Therefore f is both GK∞
- and GK′ -equivariant. But GK∞

and GK′ generate all
of GK , because K ′/K is tamely ramified and any finite subextension of K∞/K is
totally wildly ramified. The lemma follows. �

Lemma 4.3. For each tame type τ the map X τ,BT → R2 given by the restriction
of f is a monomorphism.

Proof. We follow the strategy of the proof of [LLHLM2, Prop. 7.2.11]. Namely, it
suffices to show for any a ≥ 1 and any finite type O/̟a-algebra A that the functor
X τ,BT(A)→R2(A) is fully faithful. In the case that A is a local Artinian O-algebra
with finite residue field, this follows directly from Lemma 4.2, because X τ,BT(A)
is equivalent to a full subcategory of the groupoid of A-module representations of
GK that are potentially finite flat and become finite flat over K ′. To see the latter,
note that an object of X τ,BT(A) specializing to the Galois representation ρ : GK →

GL2(A/mA) is pulled back from a versal morphism Spf(Rτ,BT
ρ ) → X τ,BT, where

Rτ,BT
ρ is a potentially Barsotti–Tate deformation ring. Therefore the corresponding

Galois module becomes finite flat over K ′, e.g. by [Kis, Prop. 2.3.8].
The general case follows exactly as in the final paragraph of the proof of [LLHLM2,

Prop. 7.2.11]: one establishes that for objects x1, x2 of X τ,BT(A) with images y1, y2
inR2(A), the functors Isom(x1, x2) and Isom(y1, y2) are representable by finite type
A-schemes, and then one applies [LLHLM2, Lem 7.2.5] to reduce to the settled case
of local Artinian O-algebras with finite residue field. �

Remark 4.4. We elaborate one point in the second part of the above argument.
The reference to [EG1, Prop. 5.4.8] in the proof of [LLHLM2, Prop. 7.2.11] han-
dles the representability of Isom(y1, y2); it also establishes the representability of
Isom(x◦

1, x
◦
2) where x◦

i denotes the étale ϕ-module underlying xi (here we really
do mean forgetting Γ). It remains to check that commutation with Γ cuts out
a closed condition on Isom(x◦

1, x
◦
2). If it were the case that each projective étale

(ϕ,Γ)-module were a direct summand of a free étale (ϕ,Γ)-module, as is the case for
étale ϕ-modules by [EG1, Lem. 5.2.14], it would be straightforward to check this
exactly as in the proof of [EG1, Prop. 5.4.8]; but this does not seem immediately
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evident. On the other hand, writing each x◦
i as the direct summand of a free étale

ϕ-module, the action of Γ (regarded as a semigroup) on xi can be extended by zero
to the free étale ϕ-module, and one can argue equally well using this extension.

Theorem 4.5. There is an isomorphism hτ : X τ,BT → Zτ which, for complete
local Noetherian O-algebras A, is given by the identity on the corresponding Galois
representations.

Proof. Let g : Zτ → R2 be the closed immersion Zτ → Rdd followed by the
isomorphism Rdd →R2. Let Y sit at the corner of the pullback square

Y Zτ

X τ,BT R2.

iZ

iX g

f

Since both f, g are monomorphisms, so are iZ and iX . In fact g is a closed immer-
sion, and therefore so is iX ; in particular iX is representable, hence representable
by algebraic stacks in the sense of [Eme, Def 3.1(2)] (see also Remark 3.2 of loc.
cit.). It follows from [Eme, Lem. 7.9] that Y is a p-adic formal algebraic stack over
Spf(O). Each of X τ,BT, Zτ , and Y are topologically of finite type over O, e.g.
because their special fibers are of finite type over F.

Over any finite flat O-algebra A, the stacks X τ,BT and Zτ have the same
A-points, in the sense that X τ,BT(A) and Zτ (A) each correspond to potentially
Barsotti–Tate representations of type τ on projective A-modules. We deduce that
functors iX(A) and iZ(A) are both essentially surjective.

Finally, X τ,BT and Zτ are each flat over Spf(O), and they are each analyti-
cally unramified in the sense of [Eme, Def. 8.22]: as noted in the paragraph before
[LLHLM2, Warning 7.2.1], this is equivalent to having reduced versal rings at all
finite type points, which follows from [CEGSb, Cor 5.2.19] for Zτ and from [EG2,

Prop. 4.8.10] for X τ,BT. (Recall that the deformation rings Rτ,BT
ρ are reduced by

definition.)
Taking all these observations together, we see that the two maps iX and iZ each

satisfy the hypotheses of [LLHLM2, Lem. 7.2.6(1)], hence each is an isomorphism.
We obtain an isomorphism by taking hτ := iZ ◦ i

−1
X : X τ,BT → Zτ . The statement

about Galois representations then follows from the corresponding statements for f
and g (together with full faithfulness of restriction from GK to GK∞

). �

As an application of Theorem 4.5, we establish the existence and basic prop-
erties of loci in Zdd,1 of representations satisfying certain p-adic Hodge theoretic
conditions.

Corollary 4.6. Suppose r and τ are Hodge and inertial types with the property
that no twist of a très ramifiée representation has a potentially crystalline lift of
type r and τ . Then there is a unique reduced closed substack Z

τ,r
red ⊂ Z

dd,1 with the
property that a representation ρ : GK → GL2(F

′) lies in Z
τ,r
red(F

′) if and only if ρ
has a potentially crystalline lift of type r and τ . (Here F′/F is any finite extension.)

Furthermore Z
τ,r
red is equidimensional of dimension equal to that of X

crys,τ,r
2,red , and

the irreducible components of Zτ,r
red are in bijection with those of X crys,τ,r

2,red , such that
corresponding components have the same finite type points.
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Proof. Uniqueness is immediate from the fact that reduced closed substacks of
reduced stacks are characterized by their finite type points. In particular the stack
Zr,τ

red must be independent of the various choices in the construction that follows.
The reduced algebraic stack X crys,τ,r

2,red has finitely many irreducible components

Yi. By the hypothesis that no point of X
crys,τ,r
2,red is a twist of a très ramifiée represen-

tation, it follows that each Yi is contained in the union ∪σX σ
2,red, the union taken

over all non-Steinberg Serre weights; thus Yi ⊂ X
σi

2,red for some non-Steinberg Serre
weight σi. Let τi be any tame type such that σi is a Jordan–Hölder factor of the

reduction mod p of σ(τi), so that X σi

2,red (and therefore Yi) is contained in X τi,BT
red .

Define Zi ⊂ Zτ,1 to be the image of Yi under the isomorphism hτi of Theorem 4.5.
Then the (reduced) union of the Zi’s inside Zdd,1 has the desired property.

By construction Yi and Zi are isomorphic and have the same finite type points.
Since each Yi is irreducible and there are no inclusions between the Yi’s, considera-
tion of finite type points shows that the same must be true of the Zi’s inside Zdd,1.
This gives the final statement. �

4.2. Irregular loci in Zdd,1. We now resume the running assumption that the
extension K/Qp is unramified, and introduce the following terminology.

Definition 4.7. We say that the Hodge type r is

• p-bounded if ri,1 − ri,2 ≤ p for all i,
• Steinberg if ri,1 − ri,2 = p for all i, and
• regular if ri,1 − ri,2 > 0 for all i.

Lemma 4.8. Assume that the Hodge type r is p-bounded and non-Steinberg. Then r
together with the trivial type satisfies the hypothesis of Corollary 4.6, giving a re-
duced closed substack Z

r
red := Ztriv,r of Zdd,1 whose finite type points are precisely

those having a crystalline lift of type r.

Proof. Suppose that ρ : GK → GL2(F
′) has a crystalline lift of Hodge type r. We

must show that ρ is not très ramifiée. If r is regular, then there is a non-Steinberg
Serre weight σ such that ρ has a crystalline lift of Hodge type r if and only if
σ ∈ W (ρ), and we conclude by [CEGSc, Lem. A.5(2)]. So we may assume for the
remainder of the proof that r is irregular.

If ρ is reducible, then by [Wie, Chapter 5, Cor 2.7] the ratio of the diagonal

characters of ρ has restriction to inertia equal to
∏f−1

i=0 ωti
i , where for some subset

J ⊂ Z/fZ we have ti = ri,1 − ri,2 for i ∈ J and ti = ri,2 − ri,1 for i 6∈ J . In
particular ti ∈ [−p, p] for all i. We will show that the ratio of characters cannot be
cyclotomic, and indeed that we cannot have

(4.9)

p−1∑

i=0

pf−1−iti ≡
pf−1
p−1 (mod pf − 1).

Since r is irregular, we have tj = 0 for some j, and without loss of generality (e.g.
multiplying both sides by pf−1−j) we may assume tf−1 = 0. Then the left-hand
side of (4.9), considered as an integer, is divisible by p; while the right-hand side,
again considered as an integer, is 1 modulo p. We must therefore have an equality

p−1∑

i=0

pf−1−iti =
pf−1
p−1 + k(pf − 1)
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where k ≡ 1 (mod p). We have
∣∣∣
∑p−1

i=0 pf−1−iti

∣∣∣ < p · p
f
−1

p−1 , with strict inequality

because tf−1 = 0. This already rules out k ≥ 1. Similarly

(1− p)(pf − 1) + pf−1
p−1 = (2p− p2)p

f−1
p−1 ≤ −p ·

pf−1
p−1

since p ≥ 3, so k ≤ 1− p is ruled out as well. Therefore (4.9) has no solutions. �

To each non-scalar tame type τ and profile J ⊂ Z/f ′Z, we will now associate
a Hodge type r(τ, J), or more precisely a Hodge type up to equivalence under an
equivalence relation that we will define in the next two paragraphs.

Let us write Λ ⊂ Zf for the set of tuples λ = (λi) such that the inertial character∏f−1
i=0 ωλi

i is trivial. Concretely, this is the set of tuples λ such that

f−1∑

i=0

pf−iλi ≡ 0 (mod pf − 1).

Interpreting λ as a Hodge type of rank 1, we see that Λ can equivalently be described
as the set of Hodge types of crystalline characters of GK that are trivial modulo p.

Definition 4.10. If r is a Hodge type and λ ∈ Zf , we define r+λ to be the Hodge
type {ri,j + λi}i,j . We define an equivalence relation ∼ on the set of Hodge types
by taking r ∼ r′ if and only if r′ = r + λ with λ ∈ Λ. If r ∼ r′ then evidently

X
r
red = X

r′

red, thanks to the description of Λ in terms of crystalline characters with
trivial reduction mod p.

To the pair τ and J , we have already associated a tuple of integers sJ,i and a
character ΘJ , as in equations (1.12) and (1.14). Write

ΘJ =

f−1∏

i=0

ω
θJ,i
i

for some integers θJ,i. The tuple θJ = (θJ,i)i is not uniquely defined, but it is
unique up to translation by an element of Λ. We then define r(τ, J) by the formula

r(τ, J) := {−sJ,i − θJ,i, 1− θJ,i}i∈Z/fZ(4.11)

and obtain a Hodge type up to equivalence under ∼. Recall from Sections 1.4.1
and 1.4.3 that in our conventions, and for profiles J ∈ Pτ , we have σ(τ)J ∈ W (ρ)
if and only if ρ has a crystalline lift of Hodge type r(τ, J).

Definition 4.12. We define N τ (J) to be the stack Z
r
red for any representative r of

r(τ, J). This is well-defined by Lemma 4.8 and the final sentence of Definition 4.10.

If J ∈ Pτ then N τ (J) = Z(σ(τ)J ) is an irreducible component of Zdd,1. How-
ever, if instead J 6∈ Pτ then the finite type points of N τ (J) are the representations
with crystalline lifts of (irregular) Hodge type r(τ, J), and N τ (J) has codimension
#{i : sJ,i = −1}. The following combinatorial result shows that Z

r
red arises as one

of the loci N τ (J) for every p-bounded and non-Steinberg Hodge type r.

Proposition 4.13. For each p-bounded and non-Steinberg Hodge type r, we can
find a non-scalar tame type τ and a profile J ⊂ Z/f ′Z such that r ∼ r(τ, J), or
equivalently such that Zr

red = N τ (J).

Recall from [CEGSc] that for i ∈ Z/f ′Z and each profile J , we say that (i− 1, i)
is a transition (at i) if #{i− 1, i} ∩ J = 1, and a non-transition otherwise.
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Proof. Set si = ri,1 − ri,2 − 1 ∈ [−1, p − 1]. Recall that for each non-scalar tame
type τ = η⊕ η′ and each profile J there is an associated tuple of integers sJ,i given
by the formula

sJ,i :=

{
p− 1− γi − δJc(i) if i− 1 ∈ J,

γi − δJ (i) if i− 1 6∈ J,
(4.14)

with the integers γi ∈ [0, p − 1] coming from writing the ratio η/η′ in terms of
multiplicative lifts of fundamental characters as in (1.10). It suffices to produce a
non-scalar tame type τ and a profile J such that si = sJ,i for all i, for then we will
have r = r(τ ⊗ χ, J) for a suitable character χ of GK .

There are evidently pf possibilities for the tuple γ0, . . . , γf−1. (Recall that in
the cuspidal case we then have γi+f = p−1−γi.) Each of these pf possibilities can

arise from some cuspidal type η⊕ ηp
f

. To see this, note for example that there are

p2f − pf possibilities for the character η, and each possibility for the ratio η/ηp
f

arises from pf − 1 different η’s. In the principal series case every possibility can
arise except the case γi = 0 for all i, or the case γi = p − 1 for all i, since these
would give a scalar type.

We now define a tuple γ0, . . . , γf−1 and a profile J by the following procedure.
First, choose arbitrarily whether or not −1 lies in J . Then for each 0 ≤ i ≤ f − 1
in turn, we proceed as follows.

• If si ∈ [0, p−2], we choose arbitrarily whether or not i ∈ J , and then define
γi by the formula

γi :=

{
p− 1− si − δJc(i) if i − 1 ∈ J,

si + δJ(i) if i − 1 6∈ J,
(4.15)

• If instead si ∈ {−1, p−1}, then exactly one of the two possibilities for i ∈ J
or i 6∈ J in (4.15) yields a γi in the range [0, p−1], and we make that choice.
Observe for what follows that if si = −1 this requires making (i − 1, i) a
transition, and if si = p− 1 this requires making (i− 1, i) a non-transition.

Finally, if at the end of this procedure we have both −1, f−1 ∈ J or both −1, f−1 6∈
J then we can form a principal series type with profile J and yielding the chosen
integers γ0, . . . , γf−1; while if −1 ∈ J and f − 1 6∈ J or vice-versa then J can be
extended to a profile for a cuspidal type yielding the chosen integers γ0, . . . , γf−1.

This completes the construction, except for the possibility that by following the
above procedure we may have constructed a scalar principal series type. We check
that this can always be avoided. If at least one si lies in the range [0, p− 2] then
there is at least one 0 ≤ i < f where we could freely choose to create either a
transition or a non-transition at i; therefore we may arrange to create an odd total
number of transitions among i with 0 ≤ i < f , and thereby construct a cuspidal
type.

Thus we are reduced to the case where si ∈ {−1, p − 1} for all i, with an
even number of transitions and therefore an even number of −1’s. Since r is non-
Steinberg, we do not have si = p − 1 for all i, and therefore there at least two
transitions. Let i < i′ be two consecutive transitions; that is, j is a non-transition
for each i < j < i′. Then i ∈ J and i′ 6∈ J , in which case γi = 0 and γi′ = p − 1;
or else the vice-versa. In either case there is at least one 0 and at least one p − 1
among the γi’s, and the type we have constructed is non-scalar. �
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Remark 4.16. Suppose j satisfies rj,1− rj,2 ∈ [1, p− 1]. Then in Proposition 4.13
we are always able to choose the tame type τ and profile J so that for this fixed j,
there is either a transition at j or not, as desired, with the following exceptions:

(1) If f = 1 and rj,1 − rj,2 = 1, then (j − 1, j) is forced to be a transition.
(2) If f ≥ 2 and

ri,1 − ri,2 =





p− 1 if i = j,

0 if i = j + 1, and

p otherwise

then (j − 1, j) is forced to be a non-transition.

Indeed, according to the proof of Proposition 4.13, the only possible obstruction is
if there is a single j satisfying rj,1−rj,2 ∈ [1, p−1], and for one choice for whether or
not there is a transition at j, our construction leads to a scalar principal series type.
Then we are obligated to make the opposite choice. By an analysis similar to the
argument in the last paragraph of the proof of Proposition 4.13, the construction
leading to the scalar principal series type must have either 0 or 2 transitions, and
in the latter case j must be one of the two transitions.

It therefore suffices to evaluate (4.14) with γi = 0 for all i or γi = p − 1 for
all i, and for J ⊂ Z/fZ of the form ∅ or {i′, . . . , j − 1} or their complements, and
confirm which ones lead to a single sJ,i = ri,1− ri,2− 1 being in the range [0, p− 2].
This leads to the two exceptions listed above. For example, the exception (2) comes
from choosing γi = 0 for all i and J = {j}c, as well as from choosing γi = p− 1 for
all i and J = {j}.

4.3. Comparison of irregular loci and scheme-theoretic images of vertical

components. Our goal in this subsection is to establish the following, which shows
that each Zτ (J) ⊂ Zdd,1 can be described as the closed substack whose finite type
points admit certain crystalline lifts.

Theorem 4.17. If τ is a non-scalar tame type and J ⊂ Z/f ′Z is any profile, then
N τ (J) = Zτ (J); in other words, the finite type points of Zτ (J) are precisely the
representations with crystalline lifts of Hodge type r(τ, J).

Corollary 4.18. The stack Zτ (J) depends only on the Hodge type r(τ, J).

Theorem 4.17 was proved in [CEGSc] in the regular case (i.e., when J ∈ Pτ ), but
is new in the irregular case. We also note the following application of Theorem 4.17
to the Emerton–Gee stacks; again this result is new in the irregular case.

Corollary 4.19. Suppose the Hodge type r is p-bounded and non-Steinberg. Then
X

r
red

is irreducible.

Proof. This follows by combining Proposition 4.13, Theorem 4.17, the irreducibility
of the stacks Zτ (J), and the last part of Corollary 4.6. �

Note that Corollary 4.19 is false for Hodge types that are Steinberg, because if r is
Steinberg then X

r
red is the union of two irreducible components (cf. Theorem 1.1(2)).

The proof of Theorem 4.17 will occupy the remainder of this subsection. The
strategy is to prove that N τ (J) and Zτ (J) are equidimensional of the same dimen-
sion, and that there is an inclusion N τ (J) ⊂ Zτ (J). Since Zτ (J) is irreducible by
construction, the inclusion must be an equality.
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Recall that Sτ (J) is defined to be the set {i ∈ Z/fZ : sJ,i = −1}; or equivalently
if r ∼ r(τ, J), then Sτ (J) is the set {i ∈ Z/fZ : ri,1 = ri,2}. By the last part
of Corollary 4.6, we already know that N τ (J) is equidimensional of dimension
[K : Q]− |Sτ (J)|. We begin by checking that the same is true of Zτ (J).

Proposition 4.20. We have dimZτ (J) = [K : Qp]− |Sτ (J)|.

Proof. The proof is an elaboration of the proof of [CEGSc, Thm. 5.1.12]. The
construction of the stack Zτ (J) in [CEGSc, Def. 4.2.12] furnishes a map

ξ : SpecBk-free → Zτ (J)

where ξ is scheme-theoretically dominant and the source has dimension [K : Qp]+2.
We freely use the notation of [CEGSc, §3.3]. Assume first that |Sτ (J)| < f ,

and let X be the dense open subscheme of SpecBk-free defined in the paragraph
preceding [CEGSc, Rmk. 3.3.8] (and also denoted X there). By [Sta, Tag 0DS4], it
suffices to show that the restriction of ξ to X has fibers of dimension |Sτ (J)| + 2
in the sense of [Sta, Tag 0DRL].

Given an Ak-free-algebra A, an A-point of X is an extension class

[E] ∈ Ext1K(A)(M(J)A,x,N(J)A,y)

which does not become the trivial class on inverting u after any base change, where
M(J),N(J) are as in [CEGSc, Def. 4.2.8], M(J)A,x,N(J)A,y are “unramified twists”
as in [CEGSc, Def. 3.3.2], and x, y denote the images of x, y ∈ Ak-free in A.

Setting UAk-free := ker-Ext1K(Ak-free)(M(J)Ak-free,x,N(J)Ak-free,y) as in the discus-

sion before [CEGSc, Rmk. 3.3.8], Y := SpecAk-free[U∨
Ak-free ] is a closed subscheme of

SpecBk-free whose A-points are extensions [K] ∈ Ext1K(A)(M(J)A,x,N(J)A,y) that
do become trivial upon inverting u. There is a map

(4.21) (X×SpecAk-free Y )×FGm×FGm → X×SpecAk-free×FZτ (J)X → X×Zτ(J)X

given by mapping an A-point ([E], [K], r, s) in the domain to

• the extension [E] in the first coordinate,
• the extension [E′] := r · [E] + [K] in the second coordinate, along with
• the data of an isomorphism E[1/u] ∼= E′[1/u] which on the quotientsM(J)A,x[1/u]
is induced from multiplication by s on M(J).

Note that the automorphisms of E[1/u] are a torsor for Gm: this follows from
[CEGSc, Lem. 3.3] and the fact that E[1/u] is non-split after any base change.

It is immediately verified that the map (4.21) is a monomorphism and a bijection
on finite type points, observing that

X ×SpecAk-free×FZτ (J) X → X ×Zτ(J) X

is bijective on finite type points by [CEGSc, Lem. 3.3.5] and the fact that points of
X remain nonsplit after inverting u.

Therefore, if F′ is a finite extension of F, the fiber of ξ over an F′-point of X
admits a surjective monomorphism from

SpecF′[ker-Ext1K(F′)(M(J)F′,x,N(J)F′,y)
∨]×F Gm ×F Gm

which has dimension |Sτ (J)| + 2 by a comparison between [CEGSc, Prop. 5.1.8]
and (1.12). (The restriction to Bk-free avoids the exceptional case of [CEGSc,
Prop. 5.1.8].) Thus, the dimension of the fiber is also |Sτ (J)| + 2 by an appli-
cation of [Sta, Tag 0DS4].

https://stacks.math.columbia.edu/tag/0DS4
https://stacks.math.columbia.edu/tag/0DRL
https://stacks.math.columbia.edu/tag/0DS4
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Now, suppose |Sτ (J)| = f , or equivalently,

ker-Ext1K(A)(M(J)A,x,N(J)A,y) = Ext1K(A)(M(J)A,x,N(J)A,y)

for all Ak-free-algebras A. In this case, the map ξ factors as

ξ : SpecBk-free → SpecAk-free g
−→ Zτ (J)

where the first arrow is the structure map and g maps the universal point of
SpecAk-free to M(J)Ak-free,x[1/u]⊕N(J)Ak-free,y[1/u].

Let p0 ∈ SpecAk-free(F′) be fixed. The fiber of g over g(p0) is given by SpecF′×Zτ(J)

SpecAk-free. For a finite type F′-algebra A, an A-point of this fiber is a Ak-free-
algebra structure p : Ak-free → A together with an isomorphism

M(J)A,p(x)[1/u]⊕N(J)A,p(y)[1/u]
∼
−→M(J)A,p0(x)[1/u]⊕N(J)A,p0(y)[1/u].

It follows that the fiber of g over g(p0) admits a monomorphism, bijective on finite
type points, either from Gm ×F Gm or else from the disjoint union of two copies
of Gm ×F Gm. One copy comes from A-points with Ak-free algebra structure p :

Ak-free p0
−→ F′ → A, so that p(x) = p0(x) and p(y) = p0(y); the other copy, if it

exists, comes from the unique Ak-free-algebra structure p such that

M(J)A,p(x)[1/u] ∼= N(J)A,p0(y)[1/u]

N(J)A,p(y)[1/u] ∼= M(J)A,p0(x)[1/u],

again if it exists. Note that because we are on Ak-free, there is no isomorphism
M(J)A,p0(x)[1/u]

∼= N(J)A,p0(y)[1/u], so there is no GL2 in the fiber.
By density of finite type points, the topological spaces associated to the scheme-

theoretic images of the one or two copies of Gm×FGm are precisely the irreducible
components of |Zτ (J)|, and by [Sta, Tag 0DS4], each scheme-theoretic image has
dimension 2. Thus, using [Sta, Tag 0DRZ], the dimension of the fiber is 2. Another
application of [Sta, Tag 0DS4] then shows that the dimension of Zτ (J) is 0. �

We recall the following, which (more or less) is one of the main results of [GLS1].

Theorem 4.22. Let F′/F be a finite extension. Suppose that ρ : GK → GL2(F
′) is

a Galois representation, and that M0 ∈ R2(F
′) is an étale ϕ-module for K (without

descent data) such that ρ|GK∞

∼= TK(M0). If ρ has a crystalline lift with p-bounded

Hodge type r, then (M0)i has a basis xi, yi for each i ∈ Z/fZ such that the partial
Frobenius maps ΦM0,i, written with respect to the basis (xi, yi)i∈Z/fZ, have matrices

Bi

(
vri,1 0
0 vri,2

)

for some Bi ∈ GL2(F
′[[v]]).

Remark 4.23. As in Remark 3.20, the theorem remains true for any reordering
of the diagonal elements in the matrices

(
vri,1 0
0 vri,2

)
.

Proof. Twisting by a character we reduce to the case where each ri,j ∈ [−p, 0]. This
case will follow from [GLS1, Thm. 4.22] after translating between the conventions
of [GLS1] and [CEGSc] for Galois representations and Hodge–Tate weights. More
precisely: from Lemma 2.16 recall that TK(M0) ∼= T ∗

K((M0)∨). On the other
hand, having crystalline lifts with Hodge type r in the conventions of [CEGSc]
(i.e., in our conventions) is equivalent to having crystalline lifts with Hodge type
−r := {−r1,i,−r2,i}i∈Z/fZ in the conventions of [GLS1]. Thus TK(M0) has a

https://stacks.math.columbia.edu/tag/0DS4
https://stacks.math.columbia.edu/tag/0DRZ
https://stacks.math.columbia.edu/tag/0DS4
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crystalline lift with Hodge type r in our sense if and only if, in the sense of [GLS1],
T ∗
K((M0)∨) has a crystalline lift with Hodge type −r. Then [GLS1, Thm. 4.22] tells

us that (M0)∨ admits a basis for which the partial Frobenius maps have matrices

Bi

(
v−r1,i 0
0 v−r2,i

)

for some Bi ∈ GL2(R[[v]]). Finally, by Remark 2.17 the partial Frobenius matrices
for M0 are the inverse transpose of those for M0. �

Theorem 4.17 now follows easily from all the work we have already done.

Proof of Theorem 4.17. Theorem 3.19 and Theorem 4.22 show thatN τ (J) ⊂ Zτ (J).
By [EG2, Thm. 4.8.14] and Proposition 4.20, N τ (J) and Zτ (J) have the same
dimension. Since Zτ (J) is irreducible, being the scheme-theoretic image of the
irreducible component Cτ (J) of Cτ,BT,1, the theorem follows. �

Remark 4.24. If the Hodge type r is p-bounded and regular, then under the addi-
tional hypothesis that ρ is not a twist of a trés ramifiée representation, the results in
[GLS1, §§7–9] can be reinterpreted as providing a converse to Theorem 4.22; that is,
if ρ is not a twist of a trés ramifiée representation, then the if-then of Theorem 4.22
is in fact an if-and-only-if. (The extra hypothesis on ρ is necessary because if ρ is
trés ramifiée then ρ|GK∞

can be split, and in that case ρ|GK∞

∼= TK(M0) for M0

as in Theorem 4.22 with r = BT, although ρ has no Barsotti–Tate lift.)
For regular r, Theorem 3.19 and Theorem 4.22 therefore prove directly that the

F′-points of Zτ (J) are precisely those admitting a crystalline lift of Hodge type
r(τ, J), furnishing a new, purely local proof of a result from [CEGSa].

In the irregular case, we can instead use Theorem 4.17 to deduce the converse
to Theorem 4.22.

Corollary 4.25. Suppose ρ is not a twist of a trés ramifiée representation. The
“if-then” of Theorem 4.22 is an “if-and-only-if” when the Hodge type r is p-bounded.

Proof. As explained in Remark 4.24 it remains to prove the Corollary when r is
irregular. Suppose more generally that r is non-Steinberg. By Proposition 4.13,
can find non-scalar τ and a profile J such that N τ (J) is the locus of mod p rep-
resentations with crystalline lifts of Hodge type r. The converse statement follows
from the equality N τ (J) = Zτ (J) together with Theorem 3.19. �

5. Inclusions between p-bounded crystalline loci

Suppose that the p-bounded Hodge type r is irregular. Since the locus X
r
red ⊂

X2,red has positive codimension, it is reasonable to imagine that there exist inclu-
sions

X r
red ⊂ X

r′

red

for certain other p-bounded Hodge types r′. For example when f = 1, so that

K = Qp, the locus X
0
red of unramified representations is contained in the irreducible

component of X2,red associated to the Serre weight Symp−2 F
2

p. Up to twist, this is
the only proper inclusion of p-bounded crystalline loci when K = Qp.

For the remainder of this section, we assume that f ≥ 2, and we will prove in
some additional situations that representations having a crystalline lift with Hodge
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type r necessarily also have a crystalline lift with Hodge type r′, and deducing as

a corollary that X
r
red ⊂ X

r′

red.
In fact we give two arguments. The first argument is short and direct, using

Corollary 4.25 and an explicit change of basis for étale ϕ-modules. The second
argument, which we call “shape-shifting”, is more geometric and (in our opinion)
carries some explanatory power, but is also more complicated. The shape-shifting
argument relies on the observation that for the Hodge types r and r′ under consider-
ation, there exists a tame type τ and profiles J, J ′ with r = r(τ, J) and r′ = r(τ, J ′).

5.1. The direct argument. We begin by defining several operators on Hodge
types. The first two can be viewed as analogues of partial theta operators and
partial Hasse invariants in the work of Diamond and Sasaki on geometric Serre
weight conjectures ([DS]).

Definition 5.1. Let f ≥ 2. For each j ∈ Z/fZ, we define operators θj , µj , and νj
on Hodge types r by setting:

θj(r)i :=





(r1,i, r2,i − 1) if i = j − 1,
(r1,i + p, r2,i) if i = j,
(r1,i, r2,i) otherwise.

µj(r)i :=





(r1,i − 1, r2,i) if i = j − 1,
(r1,i + p, r2,i) if i = j,
(r1,i, r2,i) otherwise.

νj(r)i :=





(r1,i, r2,i − 1) if i = j,
(r2,i + p, r1,i) if i = j + 1,
(r1,i, r2,i) otherwise.

We now establish the following.

Theorem 5.2. Suppose that r is p-bounded and irregular, with r1,j = r2,j . If ρ
has a crystalline lift of Hodge type r, then ρ also has crystalline lifts of Hodge type
µj(r), and νj(r), as well as of Hodge type θj(r) provided that r1,j−1 − r2,j−1 6= p.

Note that µj(r) and νj(r) in the statement of the theorem are still p-bounded,
and the hypothesis r1,j−1 − r2,j−1 6= p guarantees the same for θj(r).

Proof. The proof of Lemma 4.8 shows that ρ is not a twist of a trés ramifiée rep-
resentation. By Corollary 4.25, it suffices to prove that if M0 ∈ R2(F

′) has a
basis β = (βi)i∈Z/fZ = (xi, yi)i∈Z/fZ such that the partial Frobenius maps ΦM0,i,
written with respect to β, have matrices

Bi

(
vri,1 0
0 vri,2

)

for some Bi ∈ GL2(F
′[[v]]), then the same holds with ri,1, ri,2 replaced by r′i,1, r

′
i,2

for all i, for each r′ ∈ {µj(r), νj(r), θj(r)}. (The hypothesis r1,j−1 − r2,j−1 6= p is
necessary to apply Corollary 4.25 when r′ = θj(r), but not for any other part of

the argument.) The key is simply that, since r1,j = r2,j , the matrix
(
vrj,1 0
0 vrj,2

)
is

scalar and therefore lies in the center of the matrix ring M2(F
′((v))). Consider the

basis β′ in which

β′
j−1 = βj−1BC, β′

j = βjD
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and β′
i = βi if i 6= j − 1, j. Here B,C,D ∈ GL2(F

′((v))) are matrices to be chosen
momentarily such that

• B ∈ GL2(F
′[[v]]),

• C,D are diagonal, and
• C commutes with B−1Bj−1.

Then the matrices of ΦM0,i with respect to β′ for i = j − 1, j, j + 1 are checked to
be

B−1Bj−1

(
vrj−1,1 0

0 vrj−1,2

)
C−1,

D−1Bjϕ(B)D

(
vrj,1 0
0 vrj,2

)
D−1ϕ(C), and

Bj+1

(
vrj+1,1 0

0 vrj+1,2

)
ϕ(D)

respectively. The theorem follows by Remark 4.23, choosing B,C,D as follows:

• For θj , take B = Bj−1, C =

(
1 0
0 v

)
and D = I,

• For µj , take B = Bj−1, C =

(
v 0
0 1

)
and D = I,

• For νj , choose B = B−1
j , so that Bjϕ(B) ≡ I (mod v), and take C = I

and D =

(
1 0
0 v

)
.

�

Corollary 5.3. Suppose that r is p-bounded and irregular, with r1,j = r2,j. Then

X
r
red ⊂ X

r′

red

for each r′ ∈ {µj(r), νj(r), θj(r)}, provided if r′ = θj(r) that we additionally assume
r1,j−1 − r2,j−1 6= p, so that r′ is p-bounded.

Remark 5.4. It is natural to ask whether X r
red is equal to the reduced intersection

of the irreducible components of X2,red that contain it. For example, suppose that
f = 2, that r is irregular at i = 1, and that 0 < r0,1 − r0,2 < p. Then [DS,
Lem. 11.2.6] has the following geometric reinterpretation: if r0,1 − r0,2 6= 1, then

X
r
red = X

µ1(r)
red ∩X

θ1(r)
red ; if instead r0,1−r0,2 = 1, then the X

r
red = X

µ0(µ1(r))
red ∩X

θ1(r)
red .

Note that in the latter case µ1(r) is irregular at i = 0, and moreover ν0(µ1(r)) ∼ r,

so that X r
red = X

µ1(r)
red . (The intersections here are all reduced intersections, i.e., we

make no claims about intersection multiplicities.)
For general f , an explicit conjecture in the same spirit can be found in [Wie,

Conj. 4.4], and will be addressed in forthcoming work of Wiersema.

5.2. Shape-shifting. We now give another proof of Theorem 5.2. The strategy is
as follows. By Proposition 4.13 we can find a tame type τ and a profile J such that
r = r(τ, J). Recall that the set Sτ (J) is precisely the set of embeddings at which
r is irregular.

The substack Zτ (J) is the scheme-theoretic image in Zdd,1 of Cτ (J), which by
the results of Section 3.1 is the stack of Breuil–Kisin modules of type τ that have
shape Iη or II when i ∈ J , and shape Iη′ or II when i 6∈ J .
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The key observation will be that if U ⊂ Cτ (J) is the closed substack of Breuil–
Kisin modules with shape II for each i ∈ Sτ (J), then the image of U in Zτ (J) is
still dense (cf. the proof of Theorem 5.9). Since Breuil–Kisin modules of shape II
may be regarded as having either “shape Iη or II” or “shape Iη′ or II”, we see
that if J ′ is any other profile such that the symmetric difference J△J ′ is a subset
of Sτ (J), then U ⊂ Cτ (J ′) as well. (This observation is the source of the name
shape-shifting.) It follows that Zτ (J) is contained in Zτ (J ′). Finally, setting r′ =

r(τ, J ′), Theorem 4.17 and the results of Section 4.1 imply that X
r
red ⊂ X

r′

red. Note
that in this argument the inclusion of stacks comes first, and the statement about
crystalline lifts is the corollary.

In fact the collection of profiles J ′ to which the shape-shifting argument can be
made to apply is somewhat larger than we have described above.

Remark 5.5. In the cuspidal case, each profile J ⊂ Z/f ′Z has the property that
i ∈ J if and only if i+f 6∈ J . It follows that the symmetric difference J△J ′ ⊂ Z/f ′Z

of two profiles has the property that i ∈ J△J ′ if and only if i + f ∈ J△J ′, and
may thus be identified with a well-defined subset of Z/fZ. We will freely make
this identification in what follows. This allows us sensibly to write J△J ′ ⊂ Sτ (J)
in the cuspidal case and not only in the principal series case, even though in the
cuspidal case J△J ′ is literally a subset of Z/f ′Z while Sτ (J) is a subset of Z/fZ.

To implement the above strategy, we begin with a brief review of some results
from [CEGSc, §§3–5]. As we have already alluded to in the proof of Proposition 4.20,
the constructions of [CEGSc] furnish us with a morphism

ξ : SpecBdist → Cτ (J)→ Zτ (J)

such that the maps from SpecBdist to both Cτ (J) andZτ (J) are scheme-theoretically
dominant. The source SpecBdist has the following description: there are rank one
Breuil–Kisin modules M(J) and N(J) such that SpecBdist is a universal family of
extensions of unramified twists of M(J) by unramified twists of N(J); the super-
script ‘dist’ indicates that for certain (τ, J) — namely if M(J)[1/u] ∼= N(J)[1/u]
— then we restrict from the whole universal family to the (dense, open) subfamily
whose F′-points are extensions of M(J)F′,a by N(J)F′,b with a 6= b.

The rank one Breuil–Kisin modules M(J)F′,a and N(J)F′,b admit the following
descriptions. Set (ci, di) = (ki, k

′
i) if i ∈ J , and (ci, di) = (k′i, ki) if i 6∈ J . Define

ri =

{
[di − ci] when (i− 1, i) is a transition,

pf
′

− 1 when (i− 1, i) is not a transition.

si =

{
[ci − di] when (i− 1, i) is a transition,

0 when (i− 1, i) is not a transition.

Finally set a0 = a, b0 = b, and ai = bi = 1 if i 6= 0. Then M(J)F′,a is the
Breuil–Kisin module M(r, a, c) of [CEGSc, Lem 4.1.1] (with F′-coefficients), and
N(J)F′,b is the Breuil–Kisin module M(s, b, c). In particular, the i-th component
(M(J)F′,a)i has a basis element mi on which I(K ′/K) acts via η if i ∈ J and η′ if
i 6∈ J , while the reverse holds for basis elements ni of (N(J)F′,b)i.
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As explained in [CEGSc, Rem. 4.1.9], an extension P of M(J)F′,a by N(J)F′,b

has partial Frobenius given by

ΦP,i(1 ⊗ ni−1) = biu
sini,

ΦP,i(1⊗mi−1) = aiu
rimi + hiu

δini,

where hi ∈ F′ and δi = 0 if (i − 1, i) is a transition while δi = [ci − di] otherwise.
The descent data on P is given by specifying that if we define βi = (mi, ni) for
i ∈ J and βi = (ni,mi) for i 6∈ J , then β = (βi) is an eigenbasis. Observe for later
reference that P has shape II at i if and only (i− 1, i) is a transition and hi = 0 (in
which case the matrix of ΦP,i with respect to β is anti-diagonal). In this manner

we identify Ext1(M(J)F′,a,N(J)F′,b) with the f -dimensional vector space spanned
by the elements hi ∈ F′.

To describe the subspace

ker-Ext1(M(J)F′,a,N(J)F′,b) ⊂ Ext1(M(J)F′,a,N(J)F′,b)

of extensions that split after inverting u, we need to introduce some notation.

Definition 5.6. An interval in Z/fZ is the image in Z/fZ of any interval in Z.
If S is any subset of Z/fZ write S(n) for the shift of S by n, and Se = S ∪ S(−1).
Any subset S ⊂ Z/fZ then has a unique decomposition S = I1

∐
· · ·

∐
Iℓ as a

disjoint union of maximal intervals. The maximality condition is equivalent to the
condition that Iei ∩ Iej = ∅ for all i 6= j.

The discussion in [CEGSc, §5.1] establishes that ker-Ext1(M(J)F′,a,N(J)F′,b)
has dimension |Sτ (J)|, and in fact that it has the following more precise description.
Note that the assumption that a 6= b if if M(J)[1/u] ∼= N(J)[1/u] implies that we
are not in the “exceptional case” of [CEGSc, Prop. 5.1.8]. In what follows, we let
I1

∐
· · ·

∐
Iℓ be the decomposition of Sτ (J) as a disjoint union of maximal intervals.

(For simplicity of notation, we suppress τ, J from the notation for I1, . . . , Iℓ.)

Proposition 5.7. Suppose that Sτ (J) 6= Z/fZ. For each k = 1, . . . , ℓ there is a
hyperplane Vk = {

∑
i∈Ie

k
αihi = 0} with each αi 6= 0 such that

ker-Ext1(M(J)F′,aN(J)F′,b) ∼=

ℓ⊕

k=1

Vk

under the identification discussed above.
If instead Sτ (J) = Z/fZ then ker-Ext1(M(J)F′,aN(J)F′,b) is equal to all of

Ext1(M(J)F′,a,N(J)F′,b).

Definition 5.8. Continue to let I1
∐
· · ·

∐
Iℓ be the decomposition of Sτ (J) as a

disjoint union of maximal intervals as above. If I 6= Z/fZ is an interval let m(I)
be the unique element of Ie \ I, and set

I ′ =

{
Ie if (m(I)− 1,m(I)) is a transition for J

I if (m(I)− 1,m(I)) is not a transition for J.

If I = Z/fZ set I ′ = I. Define Sτ (J)′ = I ′1
∐
· · ·

∐
I ′ℓ.

We can now prove the following.
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Theorem 5.9. Let J ′ be any profile with J△J ′ ⊂ Sτ (J)′. If Sτ (J) 6= Z/fZ,
assume further that J△J ′ does not contain Iek for any k.

Write r = r(τ, J) and r′ = r(τ, J ′). Then X r
red ⊂ X

r′

red.

Proof. Let V ⊂ Zτ (J) be the collection of finite type points lying in the im-
age of Ext1(M(J)F′,a,N(J)F′,b) for some a, b with a 6= b, so that V is dense
in Zτ (J). Proposition 5.7 implies that each point in V has a preimage P ∈
Ext1(M(J)F′,a,N(J)F′,b) with hi = 0 for all i ∈ J△J ′ (here using the fact that
αi 6= 0 for all i, and the hypothesis that Iek 6⊂ J△J ′ for any k). By the discussion
at the beginning of the section, this preimage has shape II at all i ∈ J△J ′, here
using in an essential way that i = m(Ik) ∈ I ′k is allowed only when (m(I)−1,m(I))
is a transition. Therefore P ∈ Cτ (J ′)(F′). It follows that V ⊂ Zτ (J ′), and so also
Zτ (J) ⊂ Zτ (J ′). �

Corollary 5.10. Theorem 5.2 holds for νj(r) and θj(r).

Proof. Using Proposition 4.13 choose τ and J so that r = r(τ, J). By hypothesis
rj,1 = rj,2 and so we have j ∈ Sτ (J). Taking the unique profile J ′ with J△J ′ = {j},
one computes that νj(r) ∼ r(τ, J ′). The result for νj now follows from Theorem 5.9.

The argument for θj(r) is similar but slightly more involved. If j − 1 ∈ Sτ (J)
then θj(r) = νj−1(r) and we are done by the previous paragraph. Otherwise, since
we have assumed that r1,j−1 − r2,j−1 6= p, we have r1,j−1 − r2,j−1 ∈ [1, p− 1]. By
Remark 4.16 we may choose (τ, J) with r = r(τ, J) such that there is a transition
at j−1, unless we are in the exceptional case described in Remark 4.16(2). Observe
that this exceptional case occurs precisely when θj(r) is Steinberg.

Assume first that θj(r) is non-Steinberg. Then as explained above we may ar-
range that there is a transition at j − 1, so that j − 1 ∈ Sτ (J)′. Taking the unique
profile J ′ with J△J ′ = {j − 1}, one computes that θj(r) ∼ r(τ, J ′). The result in
this case now follows from Theorem 5.9.

Finally suppose that θj(r) is Steinberg. Applying νj+1, νj+2, . . . , νj−1 succes-
sively to r one obtains a Hodge type of the form BT+λ with λ ∈ Zf , and such that
θj(r) ∼ St + λ. Here St is the Steinberg Hodge type {p, 0}i∈Z/fZ. The result for ν
shows that ρ has a crystalline lift of Hodge type BT+λ. Since it is standard that
a representation with a crystalline lift of Hodge type BT also has a crystalline lift
of Hodge type St, the result follows. �

The argument for µj proceeds somewhat differently. For brevity, since the argu-
ment for Theorem 5.2 in the previous subsection was complete, we content ourselves
with giving a sketch.

Proposition 5.11. Theorem 5.2 holds for µj(r).

Sketch of proof. If r is irregular at j − 1 then µj = νj−1, so we may assume that r
is regular at j − 1. Using Proposition 4.13 choose τ and J so that r = r(τ, J). By
Remark 4.16 we can always arrange that j − 1 is not a transition, and we do so.
Let J ′ be the unique profile such that J△J ′ = {j− 1}. Then r(τ, J ′) ∼ µ(r). Note
that |Sτ (J ′)| = |Sτ (J)| − δ where δ = 1 if r1,j−1 − r2,j−1 > 1 and δ = 0 otherwise.
In the latter case j − 1 ∈ Sτ (J ′).

Unfortunately we cannot apply Theorem 5.9 to the pair J, J ′, because j − 1 6∈
Sτ (J)′. Instead we argue as follows. The extensions of M(J ′)F′,a by N(J ′)F′,b

have a description that is parallel to the one for M(J)F′,a by N(J)F′,b. We let h′
i
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denote the extension parameters for J ′ that were denoted hi for J . Since j − 1
is a transition in J ′, the locus {h′

j−1 = 0} ⊂ Cτ (J ′)(F′) consists of Breuil–Kisin
modules having shape II at j − 1, which therefore also lie in Cτ (J)(F′).

If δ = 1 then j − 1, j 6∈ Sτ (J ′) and according to Proposition 5.7 we have
ker-Ext(M(J ′)a,N(J ′)b) ⊂ {h

′
j−1 = 0}. If δ = 0 then ker-Ext(M(J ′)a,N(J ′)b)

meets {h′
j−1 = 0} in codimension 1 instead. In either case ker-Ext(M(J ′)a,N(J ′)b)∩

{h′
j−1 = 0} has dimension |Sτ (J ′)|+ δ − 1 = |Sτ (J)| − 1.

The image of the locus {h′
j−1 = 0} in Zτ,1 will therefore have dimension ([K :

Q] − 1) − (|Sτ (J)| − 1) = [K : Q] − |Sτ (J)|. It follows that Zτ (J ′) contains
a ([K : Q] − |Sτ (J)|)-dimensional subset of Zτ (J). But Zτ (J) is irreducible of
dimension [K : Q] − |Sτ (J)|; after checking that this implies Zτ (J ′) ∩ Zτ (J) is
dense in Zτ (J), we conclude that Zτ (J) ⊂ Zτ (J ′). �
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potentiellement Barsotti-Tate. Trans. Amer. Math. Soc. 370 (2018), 6041–6096.

[DS] Fred Diamond and Shu Sasaki. A Serre weight conjecture for geometric Hilbert mod-
ular forms in characteristic p. To appear, J. Eur. Math. Soc., 2023.

[Eme] Matthew Emerton. Formal algebraic stacks. Avaliable at
http://www.math.uchicago.edu/~emerton/pdffiles/formal-stacks.pdf.

[EG1] Matthew Emerton and Toby Gee. ‘Scheme-theoretic images’ of morphisms of stacks.
Algebr. Geom. 8 (2021), 1–132.

[EG2] Matthew Emerton and Toby Gee. Moduli stacks of étale (ϕ,Γ)-modules and the ex-
istence of crystalline lifts, volume 215 of Annals of Mathematics Studies. Princeton
University Press, Princeton, NJ, 2023.

[EGH] Matthew Emerton, Toby Gee, and Eugen Hellmann. An introduction to the categorical
p-adic Langlands program. Notes from the I.H.E.S. Summer School on the Langlands
program, 2022.
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