Agenda :

- D Define the p-adic Hecke algebra
- 2) Construct " weight space"
- 3) Give an e.g. of a family of systems of Hecke eigenvalues parametrized by weight.
- 4) Define the Hida family & the eigencurve (Coleman & Mazur)
- 5) Give idea of proofs of Hida's & C&M's theorem.

Fix
$$N \ge 1$$
 Fix $p \nmid N$
 $M_k(N) \rightarrow wt k$, level N for $T_i(N)$

•
$$H_{k} = \mathbb{Z}$$
-subalgebra of End $(M_{k}(N))$ generated
by $LS_{k} \in \mathbb{R}$. Te as L ranges over primes not
 $\int_{V} \Gamma_{i}(N) \left(\begin{smallmatrix} i & 0 \\ 0 & k \end{smallmatrix} \right) \Gamma_{i}(N)$

$$\Gamma_{0}(N) \xrightarrow{\sim} (\mathbb{Z}/N\mathbb{Z})^{\times}$$

$$\alpha \xrightarrow{\sim} \ell$$

$$\langle \ell \rangle = \Gamma_{1}(N) \propto \Gamma_{1}(N)$$

•
$$\lambda: H_k \xrightarrow{r_q} C$$
 is called a "system of Hecke eigenvalues".
 $\xrightarrow{} \overline{\mathbb{Z}}^{1/2}$

Define Se & Te on
$$\bigoplus_{i=1}^{m} M_i(N)$$
 in the obvious way.
Se acts on $M_i(N)$ via $\langle l \rangle l^{i-2}$.

$$(lS_l)i^{l=1}$$

 $S_{l} k' \ge k$, then $\bigoplus_{\tilde{l}=p}^{k} \cdots \subset \bigoplus_{\tilde{l}=0}^{k'} \cdots$

The p-dic Hecke algebra H is :=
$$\lim_{t \to T} \mathbb{Z}_p \otimes_{\mathbb{Z}} \mathbb{H}_{\leq k}^{(p)}$$

 \exists a well defined Se & Te $\in \mathbb{H}$ $\mathbb{T}\mathbb{Z}_p \otimes_{\mathbb{Z}} \mathbb{H}_k$

Note:

$$H \longrightarrow TT Z_P \otimes_{\mathbb{Z}} H_k \longrightarrow Z_P \otimes_{\mathbb{Z}} H_k$$

 $k \ge 1$

(Fact: IH is t.f., p-adically complete, North Zp-algebra & it is a product of finitely many complete North local Zp algebras)

• A p-adic system of Hecke eigenvalues is a Zp-hom

$$\overline{3}: \mathbb{H} \longrightarrow \overline{Z}_{p}$$

Consider $\lambda^{(p)}: \mathbb{H}_{k}^{(p)} \longrightarrow \mathbb{H}_{k} \longrightarrow \overline{Z}_{p}$
Then $\overline{3}$ of the form $\lambda^{(p)} \circ (\mathbb{H} \longrightarrow \mathbb{Z}_{p} \otimes \mathbb{H}_{k}^{(p)})$
is called classical

Let
$$a := \begin{cases} p & \text{if } p \text{ is } odd \end{cases}$$

 $\mathbb{Z}_{p}^{x} \cong \mu_{p-1} \times \Gamma \text{ fm } p \text{ odd}$
 $\mathbb{Z}_{p}^{x} \cong \mu_{x} \times \Gamma \text{ fm } p \text{ odd}$
Let $\mathbb{Z}_{p} [[\Gamma]] := \lim_{T} \mathbb{Z}_{p} [\Gamma/\Gamma P^{n}]$, the completed
 $\lim_{T} \mathbb{Z}_{p} [\Gamma/\Gamma P^{n}]$, the completed
 $p\mathbb{Z}_{p}/p^{n+1}\mathbb{Z}_{p}$ \mathbb{Z}_{p} for over
 $\mathbb{P}^{\mathbb{Z}_{p}/p^{n+1}}\mathbb{Z}_{p}$ \mathbb{Z}_{p}
We have $\mathbb{Z}_{p} [\Gamma] \longrightarrow \mathbb{Z}_{p} [[\Gamma]]$
Denote with $[x]$ the eff in $\mathbb{Z}_{p}([\Gamma]]$ corresponding
 $\mathbb{T}^{x} \times \in \Gamma$

$$\mathbb{Z}_{p} [[T]] \xrightarrow{\sim} \mathbb{Z}_{p} [[\Gamma]]$$

$$T \longmapsto -1 [1]$$

$$+ 1 [1+q]$$

Want to construct
$$\mathbb{Z}_{p}[[\Gamma]] \longrightarrow \mathbb{H}^{1}$$

Suffice to construct $a_{n}^{o}\theta p$ harm $\Gamma \longrightarrow \mathbb{H}^{n}$
 $l \mapsto S_{E} \rightarrow l^{n-2}(l)$
Consider the following set (dense in Γ):
 $a := \{l \text{ prime } | l \equiv 1 \mod Na^{2}\}$
Lemma : The map $l \longrightarrow \mathbb{H}$ given by $l \mapsto S_{l}$, extends
uniquely to a construct of p horm $\Gamma \longrightarrow \mathbb{H}^{n}$
 $\mathbb{H}_{k} = \mathbb{Z}(lS_{l}, T_{e}) e prime
N$
 $P_{l} N$
 $\Gamma_{l}(N)$ This extends to a const horm on Γ
 $K \longrightarrow (x^{k-2})_{k}$
As \mathbb{H} is a complete subspace is l is dense, the

image of 1° Lands in Al

We obtain :

$$-1 + [1+n] \qquad \leftrightarrow T$$
Spec H $\xrightarrow{\text{w}}$ Spec $\mathbb{Z}_p[[\Gamma T]] \xrightarrow{\text{w}}$ Spec $\mathbb{Z}_p[[T]]$

$$\overline{\mathbb{Z}}_p \text{ prints } \mathcal{A}_p \mathbb{Z}_p[[\Gamma T]] \leftrightarrow \text{ cont. characters } c: \Gamma \rightarrow \overline{\mathbb{Z}}_p^{\times}$$
Spec $\mathbb{Z}_p[[\Gamma T]] (\overline{\mathbb{Z}}_p) \xrightarrow{\text{w}}$ Spec $\mathbb{Z}_p[[T]] (\overline{\mathbb{Z}}_p)$

$$c \qquad \mapsto c(1+n) - 1$$
Spec $\mathbb{Z}_p \longrightarrow c(1+n) - 1$
Spec $\mathbb{Z}_p \longrightarrow \mathbb{Z}_p \longrightarrow \mathbb{Z}_p[[T]]$
Define $\mathbb{C}_n : \Gamma \rightarrow \overline{\mathbb{Z}}_p^{\times} \text{ via}$

$$\mathbb{Z}_p[[\Gamma T]]$$
Define $\mathbb{C}_n : \Gamma \rightarrow \overline{\mathbb{Z}}_p^{\times} \text{ via}$

$$\mathbb{Z}_p[[\Gamma]]$$

$$f_n \cong \mathbb{Z}_p[[\Gamma]]$$
We call $\mathbb{K}_n \quad \text{the pt } q \text{ wt } \mathbb{K}$
We will regard Spec $\mathbb{Z}_p[[\Gamma]]$ as an interpolation of the set q integers
$$\lim_{\substack{I \in \mathbb{N}}} H_{SR}^{\times} \otimes \mathbb{Z}_p$$
Note: St $\mathbb{S}: H \rightarrow \overline{\mathbb{Z}}_p$ is classical mixing from $\mathbb{A}: H_n \rightarrow \overline{\mathbb{Z}}_p$,
$$\mathbb{K}_n = \mathbb{S} \circ \mathbb{W}$$

Think of w mapping a system of Hecke eigenvalues to its corresponding weight.

As so w is
$$E_R$$
, it forces w to be injective
 $1 \xrightarrow{1} \mathbb{Z}[[\Gamma]] \rightarrow H$
 $H \xrightarrow{-} \mathbb{Z}_p$
 U_{emical}
 U_{emical}
 $I \xrightarrow{1} \mathbb{Z}_p[[T]] \xrightarrow{1} \mathbb{H} \longrightarrow \mathbb{Z}_p$
 $T \xrightarrow{1} -1 + (1+q_2)^{k-2}$
 $k > 70$ will ensure nothing
nonzero dies)

As w is injective, Spec H ---> Spec Z[[[]] is sch. theoretically dominant & ... set theoretically.

$$\frac{\Gamma_{0}(N)}{\Gamma_{1}(N)} \xrightarrow{\sim} (\mathbb{Z}/N\mathbb{Z})^{X}$$

$$\begin{pmatrix} 1 & b \\ 0 & \ell \end{pmatrix}^{n} al \equiv 1 \mod N$$

$$\langle \ell \gamma = \Gamma_{1}(N) \propto \Gamma_{1}(N)$$

$$\langle \ell \gamma = \ell^{N-2} \langle \ell \gamma \rangle$$

$$\lambda(S^{L}) = \epsilon(L) l^{k-2}$$

$$\log_{L} 1 = k-2$$

- D Z C→ Spec H → Spec Zp [[T]] is dominant with finite fibers
- 2) Z contains a Zaniski dense set of points corresponding to classical systems of Hecke eigenvalues

(Recall : If
$$k \ge 4$$
, even, $E_k \in M_k(1)$ is a
Hecke eigenform)
Consider $\lambda_k^{(p)} \xrightarrow{} \lambda_k$ restricted to $H_k^{(p)}$
Consider $\lambda_k^{(p)} \xrightarrow{} \lambda_k$ associated to Eisenstein series E_k
for $k \ge 4$ & $\sum_{k=1}^{k} k \equiv 1$ mod $p-1$ if p is odd
be even if $p=2$

$$\lambda_{k}^{(p)}(lS_{\ell}) = l^{k-1} \qquad \lambda_{k}^{(p)}(T_{\ell}) = 1 + l^{k-1}$$

$$\mathbb{Z}_{p}^{\times} = \mu \times \Gamma \qquad (\mu = \mu_{p-1} \quad \text{if } p \text{ is odd} \\ \mu = \mu_{2} \quad \text{if } p \text{ is even})$$

Let
$$\varphi: \mathbb{Z}_{p}^{\times} \longrightarrow \mu$$

 $\lambda_{k}^{(p)}(lS_{\ell}) = l \varphi(l)^{i-2} (l \varphi(l)^{-i})^{k-2}$
 $\lambda_{k}^{(p)}(T_{\ell}) = 1 + l \varphi(l)^{i-2} (l \varphi(l)^{-i})^{k-2}$

where we set
$$i=0$$
 if $P=2$

$$H \xrightarrow{E} \mathbb{Z}_{p} [[\Gamma]]$$

$$S_{e} \xrightarrow{\longmapsto} \varphi(e)^{i-2} [l \varphi(e)^{-1}]$$

$$T_{e} \xrightarrow{\longmapsto} 1 + l \varphi(e)^{i-2} [l \varphi(e)^{-1}]$$

By construction
$$K_k \cdot E = \lambda_k^{(p)}$$
 for any $k \equiv i \mod p - 1$
 $\chi \mapsto \chi^{k-2}$ (or even k if $p = 2$)
 $p \to \overline{2}p^*$

$$Z_{p} [[\Gamma T]] \xrightarrow{w} H \xrightarrow{E} Z_{p} [[\Gamma T]]$$

$$[U] \longrightarrow S_{e} \longrightarrow Q(L)^{i-2} [LQ(L)^{-1}]$$

$$L \in L$$

$$\frac{\pi}{r} [U]$$

$$Q(L) = 1$$

$$us \ l = 1 \ mrd \ av$$

$$\therefore Eow = id \ on \ Z_{p} [[\Gamma T]] \Rightarrow$$

$$ve \ have a \ section \ of \ He \ weight$$

$$map, \ which \ is \ a \ separated$$

$$\therefore E \ qives \ a \ closed \ immerison$$

$$Spec \ Z_{p} [[\Gamma T]] (\overline{T}_{2})$$

$$y = U(\overline{T}_{2})$$

spec
$$\mathbb{Z}_{p}[[T]](\mathbb{Z}_{p}) \longrightarrow \operatorname{Spec} \mathbb{H}(\overline{\mathbb{Z}}_{p})$$

 $\mathcal{K} \longmapsto \mathcal{K} \circ \mathcal{E}$
 $\mathcal{K}_{k} \longmapsto \mathcal{A}_{k}^{(p)}$

Suppose we included information on Tp & pSp in 7k We would want that if Kk & Kk, are close p-adically", then 7k & 7k' should also be close p-adically

$$(Spec H) (R)$$

$$(Spec H) (R)$$

$$Hom_{rg} (H, R)$$

$$There is the endow with the endow with the endow topologyte is to evaluate topologyte is to evaluate for all continuors for all a e H$$

§4. Hida family & the eigencurve.

We observe that $\lambda_k(T_p) \& p \lambda_k(S_p)$ do not interpolate well.

If we consider the pth Hecke polynomial
$$X^2 - \lambda_k(T_P) \times + p\lambda_k(S_P)$$
, in the preceding e.g., it has the form $X^2 - (l + p^{k-1}) \times + p^{k-1} = (\chi - 1)(\chi - p^{k-1})$
No problem Problem.

So we consider points in Spec H
$$\times_{Zp}$$
 (im

Let X denote \overline{Qp} valued pto f Spec $\mathbb{H} \times \overline{Qm}$ consisting of pairs $(\overline{3}, \alpha)$ where $\overline{3} : \mathbb{H} \longrightarrow \overline{Zp}$ is classical coming from some $\overline{\lambda} : \mathbb{H}_{\mathbb{R}} \longrightarrow \overline{Zp}$ & α is a root of $p^{\mathbb{H}_{\mathbb{H}}}$ Hecke polynomial of $\overline{\lambda}$ $X^{\text{ord}} := \{(\overline{3}, \alpha) \in X \mid \alpha \in \overline{Zp}^{\times}\} = \overline{Zp}$ points in X Last time :

N, p are fixed. $l \neq p$, and a prime.

1) Defined p-adic Hecke algebora = lim $\mathbb{H}_{\leq k}^{(P)} \otimes \mathbb{Z}_{P}$

2) Constructed a "meight space" Spec H - Spec Zp [[T]]

3) Considered an e.g. of a family of systems of Hecke eigenvalues parametrized by weight

Now: Hida family & the eigencurve
$$\mathcal{T}_{p}[T,T]$$

We starting considering points in Spec H χ_{Zp} Cfm
& defined X := $\{(3, \alpha) \in \text{Spec H} \ \chi_{Zp} \ \text{Cfm} (\overline{\Omega}_p) \ | \ 3 :$
 $H \rightarrow \overline{Z}_p$ is classing coming from
some $\overline{\lambda} : H_R \rightarrow \overline{Z}_p$ & α is a root
of p^{th} Hecke polynomial of $\overline{\lambda}$
 $\chi^2 - \overline{\lambda}(T_p) \chi + p\overline{\lambda}(S_p)$

We defined
$$\chi^{\text{ord}} := \{(\xi, \infty) \in \chi | x \in \mathbb{Z}_p^{\times}\} = \overline{\mathbb{Z}_p} \text{ points in } \chi$$

Thm (Hida): Zariski closure C^{ord} of X^{ord} in Spec H × Gm is 1-dim. C^{ord} → Spec H × Gm → Spec H → Spec Zp[[[]] is finite. St is étale in the nobud of those pto of X^{ord} coming from systems of eigenvalues appearing in wt k > 2

If we try to interpolate X, taking alg Zariski closure is "too coarse". Instead, we construct a rigid analytic family lying inside the ass. rigid analytic space of (Spec H × Gm)^{an}. The (coleman & Mague): The rig. an. Zarishi closure C of X in (Spec H × Gm)^{an} is 1-dim The composite $C \longrightarrow (Spec H × Gm)^{an} \longrightarrow (Spec H)^{an} ______(Spec(Zp([[T]])))$ is flat & has discrete fibers For any c>0, I only finitely many pto (3, α) in any given fiber with ordup (α) $\leq c$.

The curve C is called the <u>eigencurve</u> of tame level N. (C^{ord})^{an} is called the "slope O part" or "the ordinary part"

Step 2:
$$(f_{or}(i) \& (i))$$

Introduce Up operator on the space
$$f = \sum_{n=1}^{\infty} a_n a^n$$

Recall: On a_1 - expansions, Up $f = \sum_{n=1}^{\infty} a_{nn} a^n$

Let
$$H^* :=$$
 quotient of $H[U_p]$ that
acts faithfully on our space
 $H \propto \mathbb{Z}_p[\chi] \longrightarrow End(space)$
 $: \qquad \chi \longrightarrow U_p$

Spec HI* - Spec H × A

St f is a modular form of wt k & luck N,
$$p \nmid N$$
,
& if x & B are roots of $(X^2 - \lambda(T_p)X + p\lambda(S_p))$

Then
$$f(\tau) - \beta f(\rho \tau)$$
 turns out to be a Up
eigenform of linel NP, with Up eigenvalue
 α .

But Spec H" is tro big

St f is an eigenform for H^* whose U_p - eigenvalue α is of +ve slope then $U_p^n f = \alpha^n f \longrightarrow O$

We can "cut out the ordinary part". Quotient of H1" acting faithfully on the ordinary part is the coordinate rg of C^{ord} = Zord

By passing to "some analytic setting", we try to get Up to be a compact operator w/ reasonable spectral theory & analyze its eigenspaces to prove the theorem.

functor.