EIGENCURVES IN THE WORLD OF MODULAR FORMS

Agenda:

1) Define the p-adic Hecke algebra
2) Construct "weight space"
3) Give an e.g. of a family of systems of Heck eigenvalues parametrized by weight.
4) Define the Hide family \& the eigencurve (Coleman \& Mazer)
5) Give idea of proofs of Hida's \& C\&M's theorem.
81. p-adic Hecke algebra

Fix $N \geqslant 1$ Fix $p \nmid N$
$M_{k}(N) \rightarrow$ wt k, level N for $\Gamma_{1}(N)$

If $l \nmid N$, define S_{l} to be $\langle l\rangle l^{k-2}$ for ℓ prime

- $H_{k}=$ Z- subalgebra of End $\left(M_{k}(N)\right)$ generated by $l S_{l} \& T_{l}$ as l ranges over primes not

$$
\begin{aligned}
& \\
& \Gamma_{0}(N) / \Gamma_{1}(N) \xrightarrow{\sim}(\mathbb{Z} / N \mathbb{Z})^{x} \\
& \alpha \longrightarrow l(N)\left(\begin{array}{ll}
1 & 0 \\
0 & \ell
\end{array}\right) \Gamma_{1}(N) \\
&\langle\ell\rangle= l \\
& \\
& \Gamma_{1}(N) \propto \Gamma_{1}(N)
\end{aligned}
$$

- $\lambda: \mathbb{H}_{k} \longrightarrow^{\text {vg hoo }} \mathbb{C}$ is called a system of Hecke eigenvalues".

$$
\stackrel{\bar{T}^{\prime}}{ }
$$

We think of λ as taking values in $\overline{\mathbb{L}}_{P}$

- $H_{k}^{(P)}$ is the subalgebra of H_{k} generated by $l S_{l} \& T_{l}$ for l not dividing N_{p}. prime, fixed ${ }^{\text {fixed, level }}$

$$
S_{l} \text { acts an } M_{i}(N) \underset{i=1}{\text { via }} \quad\langle l\rangle l^{i-2} \text {. }
$$

- Let $H_{\leqslant 1}^{(P)}:=\mathbb{Z}$-subalgebra of endomorphisms of $\oplus_{i=1}^{k} M_{i}(N)$ generated by ℓS_{l} \& T_{l} for $l \times N_{p}$.

$$
\sum_{\left(l S_{l}\right)_{i}}^{\prod_{i=1}^{k} H_{i} c \quad \pi \text { End }\left(M_{i}(N)\right)} \begin{aligned}
& \text { generated by } l S_{l} \&
\end{aligned}
$$

$$
\text { If } k^{\prime} \geqslant k \text {, then } \oplus_{i=p}^{k} \cdots \quad c \quad \oplus_{i=0}^{k^{\prime}} \cdots
$$

$$
\begin{aligned}
& \Rightarrow H_{\leqslant k^{\prime}}^{(P)} \xrightarrow{\text { restriction }} H_{1}^{(P)} \\
& l S_{l} \quad \longmapsto l S_{l} \\
& T_{l} \quad \longmapsto \quad T_{l} \\
& \Rightarrow \quad \mathbb{Z}_{p} \otimes \mathbb{H}_{\leqslant k^{\prime}}^{(P)} \rightarrow \mathbb{Z}_{p} \otimes \mathbb{H}_{\leqslant k}^{(P)} \\
& \text { Se } \uparrow_{\text {inverts } l}
\end{aligned}
$$

The $\underline{p \text {-die Heck algebra }} \mathbb{H}$ is $:=\quad \lim _{\leftarrow} \mathbb{Z}_{p} \otimes_{\mathbb{Z}} \mathbb{H}_{\leq k}^{(p)}$ \exists a well defined $S_{l} \& T_{l} \in \mathbb{H} \quad \Pi_{\mathbb{Z}_{p} \otimes_{2} H_{k}}$

Note:

$$
\mathbb{H} \longleftrightarrow \prod_{k \geq 1}^{\longrightarrow} \mathbb{Z}_{p} \otimes_{\mathbb{Z}} H_{k} \longrightarrow \mathbb{Z}_{p} \otimes_{\mathbb{Z}} H_{k}
$$

(Fact: \mathbb{H} is t.f., p-adically complete, North \mathbb{Z}_{p}-algebra \& it is a product of finitely many complete Nocth local Z_{p} algebras)

- A p-adic system of Heck eigenvalues is a \mathbb{Z}_{P}-hon $\xi: \mathbb{H} \longrightarrow \overline{\mathbb{Z}}_{\boldsymbol{P}}$
consider $\quad \lambda^{(P)}: \mathbb{H}_{k}^{(P)} \longleftrightarrow H_{k} \xrightarrow{\lambda} \overline{\mathbb{Z}}_{p}$
Then ξ of the form $\lambda^{(p)} \circ\left(H \rightarrow \mathbb{Z}_{p} \otimes H_{k}^{(p)}\right)$ is called classical
§2. Weight Space
\exists a canonical map \quad spec $H \rightarrow$ Spec $\mathbb{Z}_{p}[[T]]$
This will be our weight space

Let $\quad a:= \begin{cases}p & \text { if } p \text { is odd } \\ p^{2} & \text { of } p \text { is even }\end{cases}$ $\mathbb{Z}_{p}{ }^{\times} \cong \mu_{p-1} \times \Gamma$ for p odd
$\mathbb{Z}_{p}^{x} \cong \mu_{2} \times \Gamma$ for peen let $\Gamma:=1+q \mathbb{Z}_{p} \quad\left(u^{(1)}\right.$ if p is odd)

Let $\mathbb{Z}_{p}[[\Gamma]]:=\underbrace{\lim }_{n} \mathbb{Z}_{p}[\underbrace{\Gamma / \Gamma p^{n}}_{\operatorname{liog}^{r}}]$, the completed op $\begin{gathered}\text { ry of } \Gamma \text { over } \\ \mathbb{Z}_{p}\end{gathered}$ $P Z_{p} / p^{n+1} \mathbb{Z}_{p}$

We have $\quad \mathbb{Z}_{p}[\Gamma] \longleftrightarrow \mathbb{Z}_{p}[[\Gamma]]$
Denote with $[x]$ the eft in $\mathbb{Z}_{P}[[\Gamma]]$ corresponding to $x \in \Gamma$

$$
\begin{aligned}
\mathbb{Z}_{p}[[T]] & \sim & \mathbb{Z}_{p}[[\Gamma]] \\
T & \longmapsto & -1[1] \\
& & +1[1+q]
\end{aligned}
$$

Want to construct $\mathbb{Z}_{p}[[\Gamma]] \longrightarrow \mathbb{H}$
Suffices to construct a_{a} continuo hours $\quad \Gamma \longrightarrow \mathbb{H}^{x}$

$$
l \mapsto S_{l} \rightarrow l^{R-2}\langle l\rangle
$$

\rightarrow by Dirichlet's theorem on primes in arithmetic progression
Consider the following set (dense in Γ):

$$
\mathcal{L}:=\{l \text { prime } \mid l \equiv 1 \bmod \mathrm{Nq}\}
$$

τ_{p} when p is odd
Lemma: The map $\mathcal{L} \longrightarrow \mathbb{H}$ given by $l \longmapsto S_{l}$, extends uniquely to a continuous gp how $\Gamma \rightarrow \mathbb{1}^{x}$

$$
\begin{aligned}
& \text { Pf: } \quad \mathcal{L} \longrightarrow \lim _{\hookleftarrow} \mathbb{Z}_{p} \otimes \mathbb{Z}^{(p)} \quad \longleftrightarrow k \prod_{k}^{(p)} \mathbb{Z}_{p} \otimes \mathbb{H}_{k}^{(p)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { N } \\
& \langle l\rangle \text { is trivial }
\end{aligned}
$$

piN
$\Gamma_{1}(N)$
This extends to a cont how on Γ

$$
x \longmapsto\left(x^{k-2}\right)_{k}
$$

As H is a complete subspace $\& \mathcal{L}$ is dense, the image of P lands in M

We obtain :

$$
-1+[1+q] \quad \leftarrow \quad T
$$

Spec HH $\xrightarrow{\omega}$ Spec $\mathbb{Z}_{p}[[\Gamma]] \xrightarrow{\sim}$ Spec $\mathbb{Z}_{p}[[T]]$
$\overline{\mathbb{Z}}_{p}$ points of $\mathbb{Z}_{p}[[\Gamma]] \longleftrightarrow$ cont. characters $c: \Gamma \rightarrow \overline{\mathbb{Z}}_{p} x$

Spec $\mathbb{Z}_{p}[[\Gamma]]\left(\overline{\mathbb{Z}}_{p}\right) \sim$ Spec $\mathbb{Z}_{p}[[T]]\left(\overline{\mathbb{Z}}_{p}\right)$

$$
k \quad \longmapsto \quad c(1+q)-1
$$

Spec $\overline{\mathbb{Z}}_{p} \longrightarrow$ Spec $\mathbb{Z}_{p}[[T]] \quad \mathbb{Z}_{p}[[T]]$
 We call k_{k} the pt of wt k

We will regard Spec $\mathbb{Z}_{p}[[\Gamma]]$ as an interpolation of the set of integers

$$
=\lim _{n} \mathbb{H} \leqslant k \otimes \mathbb{Z}_{P}
$$

Note: If $\xi: \mathbb{H} \rightarrow \overline{\mathbb{Z}}_{p}$ is classical arising from $\lambda: H_{k} \rightarrow \overline{\mathbb{Z}}_{p}$, then ξ

$$
r_{k}=\xi \circ w
$$

Think of w mapping a system of Heck eigenvalues to its corresponding weight.

As $\xi \circ w$ is K_{R}, it forces w to be ingecture

$$
\underset{\substack{H \underset{\text { classical }}{\rightarrow}}}{\overline{\bar{D}}_{p}}{ }^{\imath} \mathbb{Z}[[\Gamma]] \rightarrow H
$$

$$
\begin{aligned}
\text { as } & \mathbb{Z}_{p}[[T]] \xrightarrow{\mathbb{Z}_{p}[[[\Gamma]]} \xrightarrow{w} H \longrightarrow \overline{\mathbb{Z}}_{p} \\
T & \longmapsto-1+(1+q)^{k-2}
\end{aligned}
$$

$k \gg 0$ will ensure nothing nonzero dies)

As w is infective, She $H \longrightarrow$ Spec $\mathbb{Z}[[\Gamma]]$ is sch.theoreticall dominant \& \therefore set theoretically.
$\left\{\begin{array}{l}\text { We can ask if } \exists \text { families of systems of Hecke } \\ \text { eigenvalues (\& of Galois representations) parametrized } \\ \text { by weight. }\end{array}\right.$

$$
\begin{aligned}
& \Gamma_{0}(N) / \Gamma_{1}(N) \xrightarrow{\sim}(\mathbb{Z} / N \mathbb{Z})^{x} \\
& \left(\begin{array}{ll}
1 & b \\
0 & l
\end{array}\right)^{\prime \prime} \quad a l \equiv 1 \bmod N \\
& \langle\ell\rangle=\Gamma_{1}(N) \propto \Gamma_{1}(N) \\
& \langle l\rangle, l^{k-2}\langle l\rangle \\
& \lambda\left(s^{l}\right)=\varepsilon(l) l^{k-2} \\
& \log _{l} 11=k-2
\end{aligned}
$$

Can we find
$Z \stackrel{\text { closed }}{c}$ Spec H
st.

1) $Z \hookrightarrow \operatorname{Spec} H \xrightarrow{w} \operatorname{Spec} \mathbb{Z}_{p}[[T]]$ is dominant with finite fibers
2) Z contains a Zariski dense set of points corresponding to classical systems of Hecke eigenvalues
§3. E.g. of such a family: the Eisenstein family
For simplicity $N=1$ \& fix an even residue class $i \bmod p-1$ if p is odd.
(Recall: if $k \geqslant 4$, even, $E_{k} \in M_{k}(1)$ is a Hecke eigenform)
Consider $\lambda_{k}^{(P)}$ associated to Eisenstein series \sum_{k} for $k \geqslant 4 \&\left\{\begin{array}{l}k \equiv i \quad \bmod p-1 \text { if } p \text { is odd } \\ k \text { even if } p=2\end{array}\right.$

$$
\begin{array}{ll}
\lambda_{k}^{(p)}\left(l S_{l}\right)=l^{k-1} & \lambda_{k}^{(p)}\left(T_{l}\right)=1+l^{k-1} \\
\mathbb{Z}_{p}^{x}=\mu \times \Gamma & \left(\begin{array}{ll}
\mu=\mu_{p-1} & \text { if } p \text { is odd } \\
\mu=\mu_{2} & \text { if } p \text { is even }
\end{array}\right)
\end{array}
$$

Let $\varphi: \mathbb{Z}_{p}{ }^{x} \longrightarrow \mu$

$$
\begin{aligned}
& \lambda_{k}^{(p)}\left(l S_{l}\right)=l \varphi(l)^{i-2}\left(l \varphi(l)^{-1}\right)^{k-2} \\
& \lambda_{k}^{(p)}\left(T_{l}\right)=1+l \varphi(l)^{i-2}\left(l \varphi(l)^{-1}\right)^{k-2}
\end{aligned}
$$

where we set $i=0$ if $P=2$

$$
\begin{array}{rlr}
H & E & \mathbb{Z}_{p}[[\Gamma]] \\
S_{l} & \longmapsto & \varphi(l)^{i-2}\left[l \varphi(l)^{-1}\right] \\
T_{l} & \mapsto & 1+l_{\varphi}(l)^{i-2}\left[l \varphi(l)^{-1}\right]
\end{array}
$$

By construction $\quad k_{k} \cdot E=\lambda_{k}{ }^{(p)}$ for any $k \equiv i \bmod p-1$

$$
\begin{aligned}
& \stackrel{\mu}{x} x^{k-2} \\
& \Gamma \longrightarrow \bar{L}_{p}^{*}
\end{aligned}
$$

$$
\text { (or even } k \text { if } p=2 \text {) }
$$

$$
\begin{aligned}
& \mathbb{Z}_{p}[[\Gamma]] \xrightarrow{w} H \xrightarrow{E} \mathbb{Z}_{p}[[\Gamma]] \\
& {[l] \longmapsto S_{l} \longmapsto Q(l)^{i-2}\left[l a(l)^{-1}\right]} \\
& l \in \mathcal{L} \\
& l \equiv 1 \text { mod } N a \\
& \therefore \text { Eon }=\text { id on } \mathbb{Z}_{p}[[\Gamma]] \Rightarrow
\end{aligned}
$$ we have a section of the weight map, which is a separated

\therefore E gives a closed immersion $S_{p e c} I_{p}[[\Gamma]] \rightarrow$ Spec H

Spec $\mathbb{Z}_{p}[[\Gamma]]\left(\bar{Z}_{p}\right) \longrightarrow \quad \operatorname{Spec} H\left(\bar{Z}_{p}\right)$

$$
\begin{array}{lll}
c & \mapsto & k \circ E \\
k_{k} & \mapsto & \lambda_{k}^{(p)}
\end{array}
$$

Suppose we included information on $T_{p} \& p S_{p}$ in λ_{k} We would want that if $k_{k} \& K_{k}$ ' are "close p-adically", then $\lambda_{k} \& \lambda_{k^{\prime}}$ should also be close p-adically
(Spec $H)(R)$

$$
\operatorname{Hom}_{r_{q}}(H, R)
$$

\uparrow endow with the weakest topology st. eva is contrinoos for all $a \in \mathbb{H}$
say $k^{\prime}>k, k^{\prime}-k=p^{m} u$

$$
\begin{aligned}
& \left.p s_{p} \xrightarrow{\lambda_{k}}{ }_{\lambda_{k^{\prime}}}^{p^{k-1}}{ }^{p^{k^{\prime}-1}}\right)_{\text {diff }}=p^{k-1}(\underbrace{1-p^{k^{\prime}-k}}_{\text {unit }})
\end{aligned}
$$

§4. Hida family \& the eigencurve.

We observe that $\lambda_{k}\left(T_{p}\right)$ \& $p \lambda_{k}\left(S_{p}\right)$ do not interpolate well.

If we consider the $p^{\text {th }}$ Hecker polynomial
$x^{2}-\lambda_{k}\left(T_{p}\right) x+p \lambda_{k}\left(S_{p}\right)$, in the preceding e.g., it has the form $x^{2}-\left(1+p^{k-1}\right) x+p^{k-1}$

$$
\begin{aligned}
& =(x-1)\left(x-p^{k-1}\right) \\
& \text { No problem problem. }
\end{aligned}
$$

So we consider points in $\operatorname{spec} H x_{\mathbb{I}_{p}} \mathbb{C}_{1 m}^{\mathbb{D}_{p}}$

Let x denote \bar{Q}_{p} valued pts of $\operatorname{spec} \mathbb{H} \times \mathbb{G}_{m}$ consisting of pairs (ξ, α) where $\xi: \mathbb{H} \rightarrow \overline{\mathbb{T}}_{p}$ is classical coming from some $\lambda: H_{k} \rightarrow \overline{\mathbb{Z}}_{p}$ \& α is a root of $p^{\text {th }}$ Hecke polynomial of λ

$$
x^{\text {ord }}:=\left\{(\xi, \alpha) \in x \mid \alpha \in \overline{\mathbb{Z}}_{p}^{\times}\right\}=\overline{\mathbb{Z}}_{p} \text { points in } x
$$

Last time:
N, P are fixed. $l \neq P$, and a prime.

1) Defined p-adic Hecke algebra $=\lim _{\leftarrow} \mathbb{H}_{\leq k}^{(P)} \otimes \mathbb{Z}_{p}$
2) Constructed a "weight space" Spec $H \xrightarrow{w-}$ Spec $\mathbb{Z}_{p}[[T]]$
3) Considered an eeg. of a family of systems of Hecke eigenvalues parametrized by weight
(in other words, $\quad Z \hookrightarrow \operatorname{Spec} \mathbb{H} \xrightarrow{w} \operatorname{Spec} \mathbb{Z}_{p}[[T]]$
zarishi dense dominant $w /$ finite fibres Set of pto
corr. to classical systems.

Now: Hida family \& the eigencurve
We starting considering points in spec HT $x_{Z_{p}} \mathbb{C}_{m}$ \& defined $\chi:=\left\{(\xi, \alpha) \in\right.$ Spec $H x_{z_{p}} G_{m}\left(\overline{\mathbb{Q}}_{p}\right) \mid \xi:$
$H \rightarrow \overline{\mathbb{Z}}_{p}$ is classing coming from some $\lambda: \mathbb{H}_{k} \rightarrow \overline{\mathbb{T}}_{p} \& \alpha$ is a root of $\underbrace{\text { th Heck polynomial of } \lambda}$

$$
x^{2}-\lambda\left(T_{p}\right) x+p \lambda\left(S_{p}\right)_{p^{k-2}\langle p\rangle}
$$

We defined $\quad x^{\text {ord }}:=\left\{(\xi, \infty) \in X \mid \alpha \in \overline{\mathbb{Z}}_{p}{ }^{x}\right\}=$ $\overline{\mathbb{Z}}_{p}$ points in X

Th m (Hida) : Zariski closure $C^{\text {ord }}$ of $X^{\text {ord }}$ in Spec $H 1 \times \mathbb{G} m$ is 1 -dim.
$C^{\text {ord }} \hookrightarrow \operatorname{spec} H \times \mathbb{C} m \xrightarrow{p r}$ Spec $H \xrightarrow{w} \operatorname{Sjec} Z_{p}[[\Gamma]]$
is finite. It is e'tale in the mold of those pts of $x^{\text {ord }}$ coming from systems of eigenvalues appearing in wt $k \geqslant 2$

If we try to interpolate x, taking alg Zariski closure is "too coarse". Instead, we construct a rigid analytic family lying inside the ass. rigid analytic space of $\left(\operatorname{Spec} H \times G_{m}\right)^{a m}$.

Thin (Coleman \& Mazur): The rig. an. Zariski closure C of x in $\left(\text { Spec } \mathbb{H} \times \mathbb{G m}_{m}\right)^{a n}$ is 1-dim The composite

$$
C \hookrightarrow\left(\text { Spec } H \times G_{m}\right)^{a n} \longrightarrow(\text { Spec } H 1)^{a n} \longrightarrow \longrightarrow{\operatorname{Spec}\left(\mathbb{I}_{p}[[T]]\right)^{a n}}^{\text {an }}
$$

is flat \& has discrete fibers

For any $c>0, \exists$ only finitely many pts (ξ, α) in any given fiber with $\operatorname{orduc}_{p}(\alpha) \leq c$.

The curve C is called the eigencurve of tame level N. $\left(C^{\text {ord }}\right)^{\text {an }}$ is called the "slope O part" or "the ordinary part"
§5. Very very rough idea of proofs:

Step 1: Space on which \mathbb{H} acts
(i) "generalized p-adic modular functions"
(ii) surrogate of (i) constructed from gp cohomology of $\Gamma_{1}(N)$
(iii) p-adically completed cohomology of modular curves.

Step 2: (For (i) \& (ii))
Introduce u_{p} operator on the space Recall: On q^{-}expansions, $\quad u_{p} f=\sum a_{n} q^{n} . \sum a_{n p} q^{n}$

Let $H^{*}:=$ quotient of $H\left[U_{p}\right]$ that acts faithfully on our space

$$
\begin{array}{cc}
H \times \mathbb{Z}_{p}[x] & \longmapsto \\
\vdots & \longmapsto \\
\cdots & u_{p}
\end{array}
$$

Spec $H^{*} \hookrightarrow \operatorname{Spec} H \times \mathbb{R}^{\prime}$

If f is a modular form of wt k \& level $N, p \nmid N$, \& if $\alpha \& \beta$ are roots of $\left(x^{2}-\lambda\left(T_{p}\right) x+p \lambda\left(S_{p}\right)\right)$

Then $f(\tau)-\beta f(p \tau)$ turns out to be a u_{p} eigenform of level N_{p}, with U_{p} eigenvalue α.
$\therefore(\xi, \alpha)$ defines a oo hon $H^{*} \longrightarrow \overline{\mathbb{Q}}_{p}$

$$
\begin{gathered}
(\xi, \alpha): \operatorname{spec} \overline{\mathbb{Q}}_{p} \longrightarrow \operatorname{Spec} H \times \mathbb{G}_{m} \longrightarrow \operatorname{SpecH} \times \mathbb{A}^{\prime} \\
\bar{x} \subset \operatorname{Spec} \mathbb{H}^{*}
\end{gathered}
$$

But spec H1 is to big

If f is an eigenform for $H H^{r}$ whose u_{p}-eigenvalue α is of the slope then $\quad u_{p}^{n} f=\alpha^{n} f \rightarrow 0$ We can "cut out the ordinary part". Quotient of H^{*} acting faithfully on the ordinary part is the coordinate in of $C^{\text {ord }}=\overline{\chi^{\text {ord }}}$

For Coleman \& Mazer's curve, the issue is:
Suppose α has the slope, then

$$
H \rightarrow H\left[u_{p}\right] \rightarrow H^{*} \longrightarrow \overline{\mathbb{Z}}_{p}
$$

$u_{p} \longmapsto \cdots \longmapsto \alpha \in \max$ ideal $\operatorname{Im}\left(U_{p}\right)$ in $H^{*} \in$ maximal ideal m^{*}

Say m^{*} lies over m in H
\therefore if $H_{\eta} \rightarrow \overline{\mathbb{Z}}_{p}$ is any system of eigenvalues, can be extended arbitrarily to H_{m}^{*}, by assigning a positive slope value to u_{p}

For non ordinary stuff, no way of algebraically distingushing positive slope mots of $p^{\text {th }}$ Heck e polynomial from any other tue slope efts of $\overline{\mathbb{Z}}_{p}$

By passing to "some analytic setting", we try to get U_{p} to be a compact operator w/ reasonable spectral theory \& analyze its eigenspaces to prove the theorem.

In the interpolation paper

- Not exactly a direct action of Up. Instead ${ }_{\wedge}^{\text {all }} G L_{2}\left(\mathbb{Q}_{p}\right)$ acts
- Introduction of $U_{p} \&$ passage to its eigenspace is effected by applying the Jacque module functor.

