ALLOWING RAMIFICATION AT EXTRA PRIMES

Goal: Examine behavior of derived deformation ring when adding a prime to the set of ramification

Setup:
p prime. k finite of char p.
G spit, semisimple adjoint, /WC). (eq. PGin)
(In particular reductive with trivial center)
$T<G$ max k-split tons

$$
\text { of }=\operatorname{Lie}\left(G_{k}\right)
$$

$S=$ finite set of primes container P

$$
\rho: \begin{aligned}
& r_{s} \rightarrow G(k) \\
& \\
& \pi_{1}{ }^{\text {et }}\left(\operatorname{spec} 2\left[\frac{1}{s}\right]\right)
\end{aligned} \quad\left(\begin{array}{l}
\text { eventually } \\
\text { with some conditions } \\
\text { to make centralizar }=z_{4 s} \\
\text { st representable }
\end{array}\right)
$$

Is the deformation functor lifting $\mathcal{\rho}$.
q: Taylor wiles prime ie.

- or $\& S$
- $q \equiv 1$ in k
- ρ (foobar) is configati to a strongly regular element $t \in T(k)$ sot.

$$
z_{a}(t)=T
$$

(e.g. in palm. distinct e.v.)
\therefore we may fix $\rho_{Q_{q}}^{\top}$:

$$
\begin{aligned}
\pi_{1} \mathbb{Q}_{q} \xrightarrow{\rho_{Q_{q}}^{\top}} \pi_{1} \mathbb{Z}_{q} \cdot{ }^{\circ \dot{o}^{\top}} \rho_{\mathbb{Z}_{w}}
\end{aligned}
$$

such that $\min _{T}{ }_{T} \cdot \rho_{\mathbb{Z}_{p}} \cong \rho_{\mathbb{Z}_{q}}$

$$
\operatorname{inc} C_{T} \cdot \rho_{Q_{p}}^{\top} \cong \rho Q_{q}
$$

- $\mathcal{Z}_{\mathbb{Z}_{q}}, \mathcal{F Q}_{Q}$: Deformation functor for $\rho_{\mathbb{Q}_{q}}$ \& ρQ_{q} as reps into G.
$\cdots \mathcal{F}_{\mathbb{Z}_{a v}}^{\top}, \mathcal{F}_{Q_{n}}^{\top}: \cdots \rho_{\mathbb{Z}_{a}}^{\top} \rho^{\top} Q_{Q}$ valued in T.

Choice of isom above induces: $\mathcal{F}_{\mathbb{T}_{q}}^{\top} \rightarrow \mathcal{F}_{\mathbb{Z}_{q}}$, similar for \mathbb{Q}_{q}.
$\cdots \mathcal{F}_{\mathbb{Z}_{q}}^{T, \square}, \mathcal{F}_{\mathbb{Q}_{q}}^{T, \square}$ framed deformation functor for $\rho_{\mathbb{L}_{a}}^{\top} \& \rho_{Q_{q}}^{\top}$.

- S_{q}^{0} Underived framed deformation $r g$

$$
I_{n} \rightarrow T
$$

Main result:

B, C, D med that q is a Taylor wiles prime $\binom{($ (A) has the important lea we need, but }{ we travel through the squares because \mathcal{F}_{q} \& }$)$ $\mathcal{F}_{\mathbb{Q}_{Q}}$ are not representable
(A)

Want the natural map $\quad \mathcal{F}_{\mathbb{Z}}\left[\frac{1}{s}\right] \longrightarrow \mathcal{F}_{\mathbb{Z}_{q}} x_{\mathcal{F}_{\mathbb{Q}_{q}}} \mathcal{F}_{\mathbb{Z}}\left[\frac{1}{s q}\right]$

Suffices to check an $k \oplus k[m] \quad \forall m \geqslant 0$ because

1) If $A \in R_{\text {ny }}^{/ k m}, \varepsilon: A \longrightarrow R$ factors as

$$
A=A_{0} \longrightarrow A_{1} \longrightarrow A_{2} \longrightarrow \cdots \longrightarrow A_{n}=k
$$

where each A_{i} is a square-zero ext of A_{i+1} by $k\left[m_{i}\right]$

$$
m_{i} \geqslant 0
$$

2) F. preserves pullbacks by small extensions (checked last time) and therefore so does $\mathcal{F}_{\mathbb{Z}_{q}} \times \mathcal{F Q}_{Q}, \mathcal{F}_{\mathbb{L}}\left[\frac{1}{2}\right]$

Therefore we need to show:
$\left(\binom{\right.$ Since Mod is an additive category \& pullbacks }{ are the same as pushouts }$)$

$$
\xrightarrow[\sim]{\text { Eamivalently, that }} \mathrm{F}_{\mathbb{Z}\left[\frac{1}{s}\right]} \xrightarrow{E f,-t f_{2}} t \mathcal{F}_{\mathbb{q}_{q}} \oplus t \mathcal{F}_{\mathbb{L}[1 / s q]} \longrightarrow t \mathcal{F}_{\mathbb{Q}_{q}}
$$

is a fiber sequence

By explicit calculations of these tangent complexes by Shenrong:

NTS:

$$
\begin{gathered}
C^{*}\left(\mathbb{Z}\left[\frac{1}{s}\right], \rho^{*} q\right)_{1} \longrightarrow C^{c}\left(\mathbb{L}_{q}, \rho_{2 v}^{*} q\right) \oplus C^{*}\left(\mathbb{L}\left[\frac{1}{s q}\right], \rho_{v}^{*} q\right) \\
\left.\right|_{0} \longrightarrow C^{*}\left(Q_{v}, \rho_{\left.Q_{n}, q\right)}\right)
\end{gathered}
$$

Note: These complexes compute étale cohomologies. Probably true by definition. constructed by taking limit of $\operatorname{simp}(x) \xrightarrow{\rho^{a} t B G} C h(k)$ where x is $\left\{x_{\alpha}\right\}_{\alpha}$ pro-simpliver, with each X_{α} is an étale hypecoveuny of Spec ...))
Caddiny mope than the celt reive of an étale cover of spec..
To verify this:
Replace Spec \mathbb{Z}_{q} by $\mathbb{Z}_{q}^{n s}$, the henselization of \mathbb{Z} at the closed pt q.

We have
$\mathbb{Z}_{\text {(q) }}{ }_{\uparrow} \mathbb{Z}_{q}^{\text {hs }} \subset \mathbb{Z}_{q}$
integral $\uparrow{ }_{\text {henselian local }}$ rings with same residue field
\Rightarrow isomorphic category o4cik of finite étale covens, same as those of \mathbb{F}_{q} finds.
\Rightarrow can replace $C\left(\mathbb{Z}_{q}\right)$ with $C^{n}\left(\mathbb{Z}_{q}^{n s}\right)$ $\& C^{*}\left(\mathbb{Q}_{N}\right)$ with $C\left(\mathbb{Q}_{N}^{n s}\right)$ \uparrow $\mathrm{z}_{\mathrm{N}}^{\mathrm{ns}}\left[\frac{1}{q}\right]$

Henselization can be presented as

$$
\Rightarrow \quad \lim C_{e t}^{n}(V) \leadsto C_{e t}^{n}\left(\mathbb{Z}_{q}^{n s}\right)
$$

A similar statement ends up being tie for \mathbb{Q}_{q}

$$
\left.\lim _{\longrightarrow} C_{e t}^{n}\left(V \times \mathbb{[} \frac{1}{s}\right] 2\left[\frac{1}{s q}\right]\right) \stackrel{C e ̂ t}{ }\left(\mathbb{Q}_{q}^{h s}\right)
$$

For $V \frac{\text { étale }}{\text { corer }} \operatorname{spec} \mathbb{Z}\left[\frac{1}{s}\right], U=\operatorname{spec} \mathbb{2}\left[\frac{1}{s w}\right]$ open $\operatorname{spec} \mathbb{2}\left[\frac{1}{s}\right]$,

$$
c^{n}\left(\operatorname{spec} \pi\left[\frac{1}{5}\right]\right) \rightarrow c^{n}(u) \oplus c^{n}(v) \rightarrow c^{n}\left(v x_{\mathbb{Z}}\left[\frac{1}{5}\right] u\right)
$$

is a fiber sequence (Mayer vietors oA50)
cancleck by passing to anjictive resolution.
(B)

\int tangent complexes
§homotopy groups

want to show that top \& bottom arrows are isoms.

First, note that as spec D_{q} is Henselian, $H_{\text {et }}\left(\right.$ spec $\left.\mathbb{T}_{q}\right)=H_{\text {et }}^{i}\left(\mathbb{F}_{q}\right)$ which is the Galois con. for $\Gamma_{Q_{p}}^{u r}$
H^{i} et $\left(\operatorname{Spec} \mathbb{Q}_{q}\right)$ is the Galois con of $C_{Q_{a}}$

$$
\begin{aligned}
\therefore h^{i}\left(\mathbb{R}_{q}\right)=0 & \forall i>1 \\
h^{i}\left(\mathbb{Q}_{q}\right)=0 & \forall i>2
\end{aligned}
$$ O3 Qu

 ρ (Foobar strongly regular
H^{2} : bottom map:
Local Tate duality gives that

$$
H^{2}\left(\Gamma_{Q}, M\right) \cong H^{0}\left(\Gamma_{Q_{r}}, M^{*}\right)^{v}
$$

Therefore STS isom on H°

$$
\begin{aligned}
& M^{*}=\operatorname{Homp}_{p \text { portion }}\left(M, \mu_{p}\right)=\operatorname{Hom}(M, \mathbb{Z} / p \mathbb{Z})=M^{2} \\
& p \text { torso As } q \equiv 1 \text { in } k \\
& \Rightarrow \quad H^{0}\left(\Gamma_{\mathbb{Q}_{a}}, g^{v}\right)=(\text { He } T)^{v} \\
& \text { (sta) }-1) x \text { Ekeme } \\
& \Rightarrow(s(a)-1)^{s-1-1} x \in \text { umnd } \\
& k=F_{9} 9 \Rightarrow x \in \text { han }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow h^{2}\left(\mathbb{Q}_{w}, \text { of }\right)=\operatorname{dim}(\text { le } T)=\operatorname{rank} G
\end{aligned}
$$

H^{\prime} : As $\operatorname{Li}(T)_{k}$ is a summand of of, necessarily inf.
bottom now:
By Euler char. formula:

$$
\begin{aligned}
1=X\left(T_{q}, M\right)= & \# H^{\circ}\left(\mathbb{Q}_{q}, M\right) \\
\# \neq H^{\prime}\left(\mathbb{Q}_{q}, M\right) & H^{2}\left(\mathbb{Q}_{q}, M\right) \\
& \Rightarrow H^{\prime}\left(\mathbb{Q}_{p}, \operatorname{Lie}(T)_{k}\right) \longrightarrow H^{\prime}\left(\mathbb{Q}_{p}, \text { of }\right)
\end{aligned}
$$

is an injection of finite gps of same size \Rightarrow iso:
top row:
ism on (Lie $T)_{k}$ summand of of, therefore suffices to check for nonzero root spaces of of
$\left(\binom{\right.$ (each is 1-dim \& preserved under }{$\Gamma_{\mathbb{Q}_{v}}$ action because $\Gamma_{\mathbb{Q}_{N}}$ maps into $\left.T\right)}$
So we may consider:
$H^{\prime}(\hat{Z}, k)$ where $\hat{\mathbb{Z}}$ acts nontriv on k HIS

$$
\frac{k}{(\alpha(1)-1) k}=0
$$

Corollary :
$\rho_{Q_{Q}}^{\top} \sim \rho \rho \mathbb{Q}_{q}$ is an equivalence
\Rightarrow for any lift of ρQ, we have a conjugate T-valued lift
$\Rightarrow \Gamma_{Q_{n}}$ action factors though

$$
\pi_{1} \mathbb{Q}_{n}^{\text {tame }, a b}
$$

1
(/ abelian": T is abclion
tame \because Iq maps into prop gp whereas wild I_{q} is pol)
(C)

$$
\begin{aligned}
& \begin{array}{c}
{ }^{\mathcal{F}_{\mathbb{Z}_{q}}} \Leftarrow \stackrel{\mathcal{F}_{\mathbb{Z}_{q}}^{T, \square}}{ } \\
\mid
\end{array} \\
& \mathcal{F}_{\mathrm{Q}_{\mathrm{q}}}^{T} \longleftarrow \mathcal{F}_{\mathbb{Q}_{q}}^{\top, \square}
\end{aligned}
$$

To make the spatting, we note that the commutativity of T makes BT (A) a simplicial group.

Then Homsset $(X, \operatorname{BT}(A),+) \longrightarrow \operatorname{Hom} \operatorname{sset}(x, \operatorname{BT}(A))$

This gives splittings on fibers over ρ. $\underbrace{\rho}_{\text {T deformation functions of } \rho}$
(D)

$\|$| (1 |
| :--- |
| |

(Defined by David last semester.
these were the representing objects in derived
 Schlessurger's)

Then R is discrete $\Leftrightarrow \pi_{0} R=\frac{w(k)\left[\left[x_{1}, \ldots, x_{b_{0}}\right]\right]}{y_{1}, \ldots, y_{b_{1}}}$
for a regular sea y_{i} of elements in $\left(p, m^{2}\right)$.
$*$

Pf : Skipped
Maybe Ashwin's talk in FRG seminar last Semester.

Lemma: The representing rings for

$$
\mathcal{F}_{Q_{v}}^{\top, 0} \& \mathcal{F}_{Q_{\gamma}}^{\top, 0} \text { are discrete. }
$$

Note that these are the underived deformation rings.
$\binom{r_{0}$ is the lift adjoint to inclusion $)}{$ of classical rings }
Let $\operatorname{dim} T=r$
$S_{q}^{u r}$ is a power series ring
as we just need to specify left of $\rho($ Frobov $)$.

$$
S_{N}^{u r}=W(k)\left[\left[X_{1}, \ldots, X_{T}\right]\right.
$$

$$
t^{0}=\operatorname{Siv}_{\text {p}}\left(k[\varepsilon] / \varepsilon^{2}\right) \text { Now, } S_{N} \text {. }
$$

Any (underived) T-valued deformation of $\rho_{R_{a}}^{\top}$ factors though the taine abelians motient of π, \mathbb{Q}_{q}.

We have $\pi_{1} \mathbb{Q}_{q}^{\text {tame } a b} \xlongequal{\cong\langle\text { fro } \gamma\rangle \times \frac{T}{q}_{q}}$ cifclic of order q-1

Suppose N is max st $p^{N} \mid q-1$.

$$
\left.\left.\begin{array}{c}
((r=\operatorname{dim} T)) \\
s_{o} \cong \quad W(k)\left[\left(X_{1}, \ldots, X_{r}, Y_{1}, \ldots, Y_{r}\right] /\left\langle\left(1+Y_{i}\right)^{p^{N}}-1\right\rangle\right. \\
\left(\left(\begin{array}{c}
\text { deformation ofrix of } \\
\text { of mation } \\
\rho(F \text { orobo })
\end{array} \quad \text { of } 1\right.\right.
\end{array}\right)\right)
$$

satisfirs

induces

framed deformation
nng of triv T -
valued Iarrep
Explicitly:

$$
\frac{W(k)\left[y_{1}, \ldots, y_{r} \rrbracket\right.}{\left\langle\left(1+y_{i}\right)^{p^{N}}-1\right\rangle} \longrightarrow \frac{W(k)\left[x_{1}, \ldots, x_{r}, y_{1, \ldots,} y_{r}\right]}{\left(1+y_{i}\right)^{p^{N}}-1} \longrightarrow W(k)\left[\left(x_{i}\right]\right.
$$

indues

