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Abstract. The Emerton-Gee stack for GL2 is a stack of (φ,Γ)-modules whose

reduced part X2,red can be viewed as a moduli stack of mod p representations

of a p-adic Galois group. We compute criteria for intersections of irreducible
components of X2,red in codimension 1 and relate them to extensions of Serre

weights.
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1. Introduction

Let p be an odd prime and let K/Qp be a finite extension, with ring of integers
OK , residue field k and absolute Galois group GK . In [EG1], Emerton and Gee
constructed and studied the stack of rank d étale (φ,Γ)-modules, denoted Xd. Over
Artinian coefficients, there exists an equivalence of categories between rank d étale
(φ,Γ)-modules and d-dimensional GK-representations that allows one to view Xd as
a moduli stack of Galois representations. The Emerton-Gee stack Xd is expected to
play a central role in the p-adic Langlands program, occupying the position played
by the moduli stack of L-parameters in the work of Fargues-Scholze on the classical
Langlands correspondence.

Specializing to d = 2, the reduced part of X2, denoted X2,red, is an algebraic
stack defined over a finite field F. The irreducible components of X2,red are labelled
by Serre weights, which are the irreducible mod p representations of GL2(k). By
[CEGS, Cor. 7.2], the labelling is in such a manner that if X2,red,σ is the component
labelled by σ, then its finite type points are precisely those representations that
have σ as a Serre weight, that is, they have crystalline lifts of Hodge-Tate weights
specified in a particular way by σ (see Section 1.4 for details).
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The main objective of this article is to compute criteria for pairs of Serre weights
σ and τ so that X2,red,σ∩X2,red,τ is a substack of codimension 1. Our strategy rests
on finding families of representations that have both σ and τ as Serre weights, and
therefore give points of X2,red,σ∩X2,red,τ . The sizes of these families can then be used
to determine the dimension of X2,red,σ ∩X2,red,τ . As employed in [EG1], a source of
families of representations is provided by extensions of fixed GK characters together
with extensions of their unramified twists. Every irreducible component of X2,red

can be obtained as the closure of such a family. Vector spaces of extensions of fixed
GK characters are typically [K : Qp]-dimensional. Allowing various unramified
twists of the fixed characters adds 2 to the dimension, while 1 dimension is taken
away because a Gm orbit of an extension class gives the same representation and
yet another dimension is taken away because of a Gm worth of endomorphisms of
each extension. Thus a codimension 1 intersection of X2,red,σ and X2,red,τ may be
expected to correspond to the existence of a codimension 1 subfamily of extensions
of fixed GK characters (as well as their unramified twists) with both σ and τ
as their Serre weights. This line of investigation gives us the required criteria
(stated in Theorem 7.1). For pairs of non-isomorphic and weakly regular (a very
mild genericity hypothesis, see definition in Section 1.4) Serre weights, the criteria
are summarized below. The precise criteria for intersections involving components
labelled by Serre weights that are not weakly regular are significantly less succinct
and omitted from the statement below.

Theorem 1.1. If σ and τ are a pair of non-isomorphic Serre weights, then

Ext1F[GL2(OK)]
(σ, τ) ̸= 0 =⇒ dim X2,red,σ ∩ X2,red,τ = [K : Qp]− 1.

When σ and τ are also weakly regular, the following stronger statement is true:

Ext1F[GL2(OK)]
(σ, τ) ̸= 0 ⇐⇒ dim X2,red,σ ∩ X2,red,τ = [K : Qp]− 1.

This result can be motivated in terms of the conjectural categorical p-adic Lang-
lands correspondence. Specifically, it has been conjectured ([EGH, Conj. 6.1.6])
that there exists a fully faithful functor U from a derived category of smooth repre-
sentations of GL2(K) to a derived category of coherent sheaves on X2 that witnesses
the p-adic local Langlands. The functor U is expected to satisfy properties related
to duality and support that imply the following:

• For σ a non-Steinberg Serre weight, the support of U(c-Ind
GL2(K)
GL2(OK)σ) is

X2,red,σ.

• For σ, τ Serre weights and V ∈ Ext1F[GL2(OK)]
(σ, τ), U ◦ c-IndGL2(K)

GL2(OK)(τ →
V → σ) is a short exact sequence.

Therefore,

U ◦ c-IndGL2(K)
GL2(OK)(V )|(X2,red,σ∩X2,red,τ )c

∼= U ◦ c-IndGL2(K)
GL2(OK)(σ ⊕ τ)|(X2,red,σ∩X2,red,τ )c .

Since U is fully faithful, if the intersection of X2,red,σ and X2,red,τ is empty, then

c-Ind
GL2(K)
GL2(OK)(V ) must be isomorphic to c-Ind

GL2(K)
GL2(OK)σ⊕ c-Ind

GL2(K)
GL2(OK)τ . Thus, we

obtain the following diagram of GL2(OK) representations where the right downward
arrow splits:
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σ c-Ind
GL2(K)
GL2(OK)σ

V c-Ind
GL2(K)
GL2(OK)V

The horizontal arrows split as maps of GL2(OK) representations by Mackey’s
decomposition theorem. The left vertical arrow must then split as well, and V must
be isomorphic to σ ⊕ τ . This shows that if the conjectured functor U exists, then
an empty intersection of X2,red,σ with X2,red,τ implies that there are no non-trivial
extensions of τ by σ as GL2(OK) modules. Our theorem is a finer variant of this
expectation.

In the course of our computations, we also find a cohomological criterion for
the number of components of dimension [K : Qp] − 1 when X2,red,σ ∩ X2,red,τ is
codimension 1, along with some naturally occurring triples of Serre weights. The
theorem below summarizes the results for pairs of weakly regular Serre weights σ
and τ .

Theorem 1.2. Let σ and τ be two weakly regular Serre weights such that X2,red,σ∩
X2,red,τ is of codimension 1. Then the following are true:

(i) When K is unramified over Qp, the number of components of dimension
[K : Qp] − 1 in X2,red,σ ∩ X2,red,τ is 1. When K is ramified over Qp,
this number is 2 if the GL2(k)-extensions of τ by σ are non-trivial, and 1
otherwise.

(ii) When K is unramified over Qp, a component of dimension [K : Qp] −
1 in X2,red,σ ∩ X2,red,τ does not lie in an intersection of three irreducible
components of X . In the ramified case, for sufficiently generic Serre weights
(c.f. Theorem 7.3), each component of dimension [K : Qp]− 1 in X2,red,σ ∩
X2,red,τ lies in an intersection of three irreducible components of X2,red.

Note that the criterion that appears in Theorem 1.1 has to do with GL2(OK)-
extensions, while the criterion that appears in Theorem 1.2 has to do with GL2(k)-
extensions.

1.3. Outline of the paper. In Section 2, we compute explicit criteria for the ex-
istence of non-trivial extensions of Serre weights as GL2(OK) representations. In
Section 3, we relate the dimensions of families of GK-representations with both
σ and τ as Serre weights to the dimension of X2,red,σ ∩ X2,red,τ . We also relate
the number of sufficiently large families to the number of components of maximal
dimension inside X2,red,σ ∩ X2,red,τ . Section 4 recalls explicit criteria for computa-
tions of Serre weights of representations. Along with the results of Section 3, these
criteria are used to restructure the problem as that of finding σ and τ that satisfy
a precise computable relationship. Sections 5 and 6 compute the solution to the
problem laid out in Section 4. Finally, Section 7 collates all the findings.

1.4. Notation. Let p be a fixed prime and let K be a finite extension of Qp with
valuation ring OK , residue field k and uniformizer π. Eventually, p will be an odd
prime, to allow the key input of [CEGS, Cor. 7.2]. However, we will allow p = 2
for many of the intermediate steps.
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We let f := f(K/Qp) and e := e(K/Qp). Let GK be the absolute Galois group
of K, and IK the inertia group. F is a finite extension of Fp, with a fixed algebraic

closure F. F is taken to be sufficiently large so that all embeddings of k into F are
contained in F.

Let T := [0, f − 1]. Fix an embedding σf−1 : k → F. Let σf−1−i := σpi

f−1 for

i ∈ T . Let ωi be the GK character given by ωi(g) = σi(
g( pf−1

√
π)

pf−1
√
π

).

We let Vt⃗,s⃗ denote the irreducible GL2(k) representation

f−1⊗
i=0

(detti ⊗ Symsik2)⊗k,σi
F

where each si ∈ [0, p − 1]. All irreducible GL2(k) representations with coefficients
in F are of this form and are called Serre weights. We can uniquely identify each
Serre weight by s⃗ and t⃗ if we demand that ti ∈ [0, p− 1] ∀i and at least one of the
ti’s is not p−1. Following [Gee], we say Vt⃗,s⃗ is weakly regular, if each si ∈ [0, p−2].
We say that Vt⃗,s⃗ is Steinberg if each si equals p− 1.

Normalize Hodge-Tate weights in such a way that all Hodge-Tate weights of the
cyclotomic character are equal to −1. Consistent with the conventions in [EG1],
we say that a representation ρ : GK → GL2(Fp) has Serre weight Vt⃗,s⃗ if ρ has a

crystalline lift ρ : GK → GL2(Qp) that satisfies the following condition: For each
embedding σi : k ↪→ F, there is an embedding σ̃i : K ↪→ Qp lifting σi such that the
σ̃i labeled Hodge-Tate weights of r are {ti, si + ti + 1}, and the remaining (e− 1)f
pairs of Hodge-Tate weights of r are all {0, 1}. In this situation, we say Vt⃗,s⃗ ∈W (ρ).

Let X2,red, or simply X , be the reduced part of the Emerton-Gee stack for two-
dimensional representations of GK . It is defined over F and is an algebraic stack
of pure dimension ef . The irreducible components of X are indexed by the non-
Steinberg Serre weights. For a non-Steinberg Serre weight Vt⃗,s⃗, we denote the

corresponding irreducible component by XVt⃗,s⃗
. If F′ is a finite field extension of F,

then XVt⃗,s⃗
(F′) is the groupoid of representations ρ : GK → GL2(F′) with Vt⃗,s⃗ ∈

W (ρ).
We will consider the si’s and ti’s associated to the Serre weight Vt⃗,s⃗ to have

indices in Z/fZ via the identification of the set T with a set of representatives of
Z/fZ. We will similarly consider the indexing set of the embeddings σi’s to be
Z/fZ.

1.5. Acknowledgements. I thank my advisor David Savitt for sharing the prob-
lem with me along with his insights on it, as well as providing continual guidance
and support. I would also like to thank Karol Koziol and Brandon Levin for helpful
conversations.

2. Extensions of Serre weights

Denote by Γ the group GL2(k), by K the group GL2(OK) and by Kn the group
1 + πnM2(OK) for n ∈ Z>0. Our objective in this section is to compute when
extensions of Serre weights are non-trivial, for use later.
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We will sometimes write Vt⃗,s⃗ as
⊗f−1

j=0 (det
tj ⊗SymsjF2

)Frf−1−j

, where Γ acts on

SymsjF2
via the natural embedding Γ ↪→ GL2(F) induced by σf−1. The exponen-

tiation by Frf−1−j denotes precomposition of the action of Γ by the (f − 1− j)-th
power of the (arithmetic) Frobenius map.

Proposition 2.1. The conditions for non-triviality of Ext1Γ(Vt⃗,s⃗, Vt⃗′,s⃗′) are given

as follows:

(i) If p > 2, f > 1, then Ext1Γ(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0 if and only if one of the following

two conditions are satisfied:
(a) ∃j ∈ Z/fZ such that s′i = si for i ̸= j − 1, j; s′j−1 = sj−1 − 1;

s′j = p − sj − 2; and
f−1∑
i=0

t′ip
f−1−i ≡

f−1∑
i=0

tip
f−1−i + (sj + 1)pf−1−j

mod pf − 1.
(b) ∃j ∈ Z/fZ such that s′i = si for i ̸= j − 1, j; s′j−1 = sj−1 + 1;

s′j = p− sj − 2; and
f−1∑
i=0

t′ip
f−1−i ≡

f−1∑
i=0

tip
f−1−i − (p− sj − 1)pf−1−j

mod pf − 1.
(ii) If p > 2, f = 1, then Ext1Γ(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0 if and only if one of the following

two conditions are satisfied:
(a) s0 < p− 2; s′0 = p− s0 − 3; and t′0 ≡ t0 + s0 + 1 mod p− 1.
(b) s0 ̸= 0, p− 1; s′0 = p− s0 − 1; and t′0 ≡ t0 + s0 mod p− 1.

(iii) If p = 2, f > 1, then Ext1Γ(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0 if and only if the central charac-

ters for Vt⃗,s⃗ and Vt⃗′,s⃗′ are the same, as well as, ∃j ∈ Z/fZ such that s′i = si
for i ̸= j − 1, j; s′j−1 = sj−1 ± 1; and s′j = p− sj − 2.

(iv) If p = 2, f = 1, then Ext1Γ(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0 if and only if s′0 = s0 = 0; and

t′0 = t0.

Moreover, Ext1Γ(Vt⃗,s⃗, Vt⃗′,s⃗′) always has dimension ≤ 1.

Proof. In order to compute Ext1Γ(Vt⃗,s⃗, Vt⃗′,s⃗′), we need to compute the second socle

layer of the injective hull of Vt⃗′,s⃗′ . Note that if an F-vector space V with Γ action

is injective as an SL2(k) module, then it is also injective as a Γ module. This is
because any SL2(k) module map ϕ can be lifted to a Γ module map by replacing it
with 1

[Γ:SL2(k)]

∑
g∈G/H

g(ϕ). Therefore, we need to find a Γ module containing Vt⃗′,s⃗′ ,

so that it is the injective hull of Vt⃗′,s⃗′ as an SL2(k) module and compute its second

socle layer.
Beyond this point, the steps are precisely as in [AJL], while carefully tracking

through the twists by powers of the determinant. The final result (stated in the
proposition) is then obtained in the same manner as [AJL, Cor. 4.5].

For p = 2, note that if V is a non-trivial Γ extension of Vt⃗,s⃗ by Vt⃗′,s⃗′ , then the

central characters of Vt⃗,s⃗ and Vt⃗′,s⃗′ are the same (this holds true for any p). This

is because F[X (Γ)] is semisimple, where X (Γ) is the center of Γ. Therefore, by
twisting by a square root of the central character (possible since p = 2), V can
be assumed to be a non-trivial F[PGL2(k)] = F[SL2(k)] extension. And therefore,
Ext1Γ(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0 implies that Ext1F[SL2(k)]

(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0. On the other hand,

every non-trivial F[SL2(k)] extension is a non-trivial F[PGL2(k)] extension, and
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therefore, a non-trivial Γ extension. It follows that Ext1Γ(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0 ⇐⇒
Ext1F[SL2(k)]

(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0. The conditions for the latter are described in the

paragraph preceding Corollary 4.5 in [AJL]. □

Remark 2.2. Ext1F[SL2(k)]
(Vt⃗,s⃗, Vt⃗′,s⃗′) = 0 implies Ext1Γ(Vt⃗,s⃗, Vt⃗′,s⃗′) = 0. This is

because any F[SL2(k)] splitting ϕ can be upgraded to a Γ splitting by replacing it
with 1

[Γ:SL2(k)]

∑
g∈Γ/SL2(k)

g(ϕ).

In order to compute Ext1K(Vt⃗,s⃗, Vt⃗′,s⃗′), we will use the Grothendieck spectral

sequence. Let σ be a F[Γ] representation, seen via inflation as a F[K] representation.
The Grothendieck spectral sequence gives us the following left exact sequence:

0 → Ext1Γ(Vt⃗,s⃗, σ) → Ext1K(Vt⃗,s⃗, σ) → HomΓ(Vt⃗,s⃗, H
1(K1, σ))(2.2.1)

By [BP, Prop. 5.1], we have the following description of H1(K1, σ).

Proposition 2.3. (i)

H1(K1, σ) ∼=
f−1⊕
i=0

σ ⊗ (V2 ⊗ det−1)Frf−1−i
d⊕

i=1

σ

where V2 is the subspace spanned by
(
2
i

)
x̃iỹ2−i in Sym2F2

where Γ acts via

the embedding Γ ↪→ GL2(F) induced by σf−1;

d = dimF Hom(1 + πOK ,F) for p ̸= 2 and d = dimF Hom(1 + πOK ,F)− f
for p = 2.

(ii) Under the above isomorphism, an element of σ⊗(V2⊗det−1)Frf−1−i

can be
seen explicitly as a map (cocycle) K1 → σ via the following correspondence:

α⊗ x̃2 ∈ σ ⊗ (V2 ⊗ det−1)Frf−1−i

↭ κliα : K1 → σ

α⊗ 2x̃ỹ ∈ σ ⊗ (V2 ⊗ det−1)Frf−1−i

↭ ϵiα : K1 → σ

α⊗ ỹ2 ∈ σ ⊗ (V2 ⊗ det−1)Frf−1−i

↭ κui α : K1 → σ

where

κli :

(
1 + πa πb
πc 1 + πd

)
∈ K1 7→ σi(c) ∈ F

ϵi :

(
1 + πa πb
πc 1 + πd

)
∈ K1 7→ σi(a− d) ∈ F

κui :

(
1 + πa πb
πc 1 + πd

)
∈ K1 7→ σi(a) ∈ F

(iii) The summand
⊕d

i=1 σ ⊂ H1(K1, σ) corresponds to maps K1 → σ that
factor through the determinant and are not given by any of the cocyles

appearing in
⊕f−1

i=0 σ ⊗ (V2 ⊗ det−1)Frf−1−i

.

Corollary 2.4. Ext1K(V
∨
t⃗,s⃗
, V ∨

t⃗′,s⃗′
) ̸= 0 if and only if Ext1K(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0.

Proof. Using (2.2.1), Ext1K(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0 implies that either Ext1Γ(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0,

or HomΓ(Vt⃗,s⃗, H
1(K1, Vt⃗′,s⃗′) ̸= 0.
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Either way, the central character is the same for Vt⃗,s⃗ and Vt⃗′,s⃗′ . This is auto-

matically true if Ext1Γ(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0 because the group algebra of the center of Γ

is semisimple. If HomΓ(Vt⃗,s⃗, H
1(K1, Vt⃗′,s⃗′)) ̸= 0, we use the description in Propo-

sition 2.3 and the fact that V2 ⊗ det−1 has trivial central character. Therefore
f−1∑
j=0

pf−1−j(2tj + sj) ≡
f−1∑
j=0

pf−1−j(2t′j + s′j) mod pf − 1.

Twisting by det
−

f−1∑
j=0

pf−1−j(2tj+sj)

, we obtain:

Ext1K(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0

⇐⇒ Ext1K(V−t⃗−s⃗,s⃗, V−t⃗′−s⃗′,s⃗′) = Ext1K(V
∨
t⃗,s⃗
, V ∨

t⃗′,s⃗′
) ̸= 0

□

Corollary 2.5. Ext1K(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0 if and only if Ext1K(Vt⃗′,s⃗′ , Vt⃗,s⃗) ̸= 0.

Proof.

Ext1K(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0

⇐⇒ Ext1K(V
∨
t⃗,s⃗
, V ∨

t⃗′,s⃗′
) ̸= 0 (by Corollary 2.4)

⇐⇒ Ext1K(Vt⃗′,s⃗′ , Vt⃗,s⃗) ̸= 0 (by taking duals)

□

Proposition 2.6. Let Vt⃗,s⃗ and Vt⃗′,s⃗′ be a pair of non-isomorphic, non-Steinberg

Serre weights. One shows up in the first K1 group cohomology of the other if and
only if, after interchanging Vt⃗,s⃗ and Vt⃗′,s⃗′ if necessary, there exists i ∈ {0, ..., f − 1}
such that

(i) For p > 2,
• si = s′i + 2,
• For j ̸= i, sj = s′j and

•
∑
j∈T

pf−1−jtj ≡ −pf−1−i +
∑
j∈T

pf−1−jt′j mod pf − 1.

(ii) For p = 2,
• si = s′i + 1,
• For j ̸= i, sj = s′j and
• The central characters of the two Serre weights are the same.

Further, for a pair of such non-isomorphic, non-Steinberg Serre weights, the
multiplicity of appearance of one in the first K1 group cohomology of the other is at
most 1.

Proof. The proof for p > 2 is covered by Proposition 5.4 and Corollary 5.5 in [BP]).
For p = 2, we first make the following observation. If HomΓ(Vt⃗,s⃗, H

1(K1, Vt⃗′,s⃗′)) ̸=
0, we can twist both sides by the square root of the central character and obtain
an inclusion of Vt⃗,s⃗ into H1(K1, Vt⃗′,s⃗′) as PGL2(k) = SL2(k) representations. On

the other hand, suppose Vt⃗,s⃗ ↪→ H1(K1, Vt⃗′,s⃗′) as SL2(k) representations and the

central characters of Vt⃗,s⃗ and Vt⃗′,s⃗′ are the same. Then this inclusion is easily seen

to be an inclusion as Γ-representations.
Therefore, assuming the central characters of Vt⃗,s⃗ and Vt⃗′,s⃗′ are the same, we only

need to find criteria for inclusion of Vt⃗,s⃗ in H1(K1, Vt⃗′,s⃗′) as SL2(k) representations.
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To emphasize disregarding the determinant twists, we will denote by L(r⃗) or by

L(
∑
pf−1−jrj) the irreducible SL2(k) representation ⊗f−1

j=0 (Sym
rjF2

)Frf−1−j

where

rj ∈ [0, p− 1] for each j and SL2(k) acts on SymrjF2
via σf−1 : SL2(k) ↪→ SL2(F).

By Proposition 2.3, H1(K1, σ) ∼=
⊕f−1

i=0 (L(s⃗
′)⊗ V Frf−2−i

2 )
⊕d

i=1 L(s⃗
′) as SL2(k)

representations. As L(s⃗) ̸∼= L(s⃗′), we need to understand when L(s⃗) embeds into

L(s⃗′)⊗ V Frf−2−i

2
∼= L(s⃗′)⊗ L(1)Frf−1−i

for a given i.

(1) s′i = 0. Then L(s⃗′) ⊗ L(1)Frf−1−i

is irreducible and isomorphic to L(s⃗),
where si = 1 and sj = s′j for j ̸= i.

(2) s′i = 1. Then

L(s⃗′)⊗ L(1)Frf−1−i ∼= L(s′0)
Frf−1−0

⊗ · · · ⊗ L(s′i−1)
Frf−i

⊗ (L(1)⊗ L(1))Frf−1−i

⊗L(s′i+1)
Frf−2−i

⊗ · · · ⊗ L(s′f−1)
Fr0

∼= L(s′0)
Frf−1−0

⊗ · · · ⊗ L(s′i−1)
Frf−i

⊗Q1(0)
Frf−1−i

⊗L(s′i+1)
Frf−2−i

⊗ · · · ⊗ L(s′f−1)
Fr0

where Q1(0) is a self-dual representation of Loewy length 3, with composition fac-
tors L(0), L(2), L(0) by [AJL, Lem. 3.1]. In fact, [AJL, Lem. 3.1] says that Q1(0)

is a direct summand of (Sym1F2 ⊗ Sym1F2
)Frf−1−i

, but by comparing dimensions,
they are equal. As SL2(F) representations:

L(s′0)
Frf−1−0

⊗ · · · ⊗ L(s′i−1)
Frf−i

⊗ L(0)Frf−1−i

⊗L(s′i+1)
Frf−2−i

⊗ · · · ⊗ L(s′f−1)
Fr0

↪→ soc

(
L(s′0)

Frf−1−0

⊗ · · · ⊗ L(s′i−1)
Frf−i

⊗Q1(0)
Frf−1−i

⊗L(s′i+1)
Frf−2−i

⊗ · · · ⊗ L(s′f−1)
Fr0

)

↪→ soc

(
Q1(s

′
0)

Frf−1−0

⊗ · · · ⊗Q1(s
′
i−1)

Frf−i

⊗Q1(0)
Frf−1−i

⊗Q1(s
′
i+1)

Frf−2−i

⊗ · · · ⊗Q1(s
′
f−1)

Fr0

)

∼=
L(s′0)

Frf−1−0

⊗ · · · ⊗ L(s′i−1)
Frf−i

⊗ L(0)Frf−1−i

⊗L(s′i+1)
Frf−2−i

⊗ · · · ⊗ L(s′f−1)
Fr0

The isomorphism in the last step is by [AJL, Lem. 3.4]. Using [AJL, Cor. 4.2]
and the assumption that L(s⃗) is not Steinberg, we conclude that L(s⃗) embeds

into L(s⃗′)⊗ L(1)Frf−1−i

if and only if L(s⃗) ∼= L(s′0)
Frf−1−0 ⊗ · · · ⊗ L(s′i−1)

Frf−i ⊗
L(0)Frf−1−i ⊗ L(s′i+1)

Frf−2−i ⊗ · · · ⊗ L(s′f−1)
Fr0 .

□

Remark 2.7. The explicit calculation of H1(K1, Vt⃗′,s⃗′) in [BP, Prop. 5.1] shows

that the inflation homomorphism H1(K1/K2, Vt⃗′,s⃗′) → H1(K1, Vt⃗′,s⃗′) is an isomor-

phism, since each K1 cocycle is in fact a K1/K2 cocycle. By the construction of the
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Grothendieck spectral sequence, this means exactly that

socΓ(
injK(Vt⃗′,s⃗′)

K2/Vt⃗′,s⃗′

injK(Vt⃗′,s⃗′)
K1/Vt⃗′,s⃗′

) = socΓ(
injK(Vt⃗′,s⃗′)/Vt⃗′,s⃗′

injK(Vt⃗′,s⃗′)
K1/Vt⃗′,s⃗′

)

Lemma 2.8. Let Vt⃗,s⃗ and Vt⃗′,s⃗′ be a pair of Serre weights. Then the natural map

Ext1K/K2
(Vt⃗,s⃗, Vt⃗′,s⃗′) → Ext1K(Vt⃗,s⃗, Vt⃗′,s⃗′) is an isomorphism.

Proof. For a group G with an F-representation σ, let injG(σ) denote the injective
hull of σ as a smooth F[G] module. Then, for each Serre weight σ, injK(σ)

Kn

is an injective K/Kn module. By injectivity of injK/Kn
(σ), there exists a map

injK(σ)
Kn → injK/Kn

(σ). The kernel of this map must be trivial, by the hull

property of injK(σ). By the hull property of injK/Kn
(σ), it is forced to be an

isomorphism. We will henceforth use injK(σ)
Kn as the injective hull of σ as a

K/Kn representation.
The explicit calculation of H1(K1, Vt⃗′,s⃗′) in [BP, Prop. 5.1 ] shows that the in-

flation homomorphism H1(K1/K2, Vt⃗′,s⃗′) → H1(K1, Vt⃗′,s⃗′) is an isomorphism, since

each K1 cocycle is in fact a K1/K2 cocycle. By the construction of the Grothendieck
spectral sequence, this means exactly that

socΓ


(
injK(Vt⃗′,s⃗′)

K2/Vt⃗′,s⃗′
)K1

injK(Vt⃗′,s⃗′)
K1/Vt⃗′,s⃗′

 = socΓ


(
injK(Vt⃗′,s⃗′)/Vt⃗′,s⃗′

)K1

injK(Vt⃗′,s⃗′)
K1/Vt⃗′,s⃗′

(2.8.1)

Now, suppose Vt⃗,s⃗ lives inside the Γ socle of

(
injK(V

t⃗′,s⃗′ )
K2/V

t⃗′,s⃗′

)K1

injK(V
t⃗′,s⃗′ )

K1/V
t⃗′,s⃗′

with multiplic-

ity n. Equivalently, HomΓ(Vt⃗,s⃗, H
1(K/K2, Vt⃗′,s⃗′)) is n-dimensional. Let N denote

the preimage in injK(Vt⃗′,s⃗′)
K2/Vt⃗′,s⃗′ of V

⊕n

t⃗,s⃗
⊂ socΓ

((
injK(V

t⃗′,s⃗′ )
K2/V

t⃗′,s⃗′

)K1

injK(V
t⃗′,s⃗′ )

K1/V
t⃗′,s⃗′

)
.

Suppose, further, that L ∼= V ⊕l

t⃗,s⃗
⊂ socΓ

(
injK(Vt⃗′,s⃗′)/Vt⃗′,s⃗′

)
−socΓ

(
injK(Vt⃗′,s⃗′)

K2/Vt⃗′,s⃗′
)
.

Then, the preimage inside injK(Vt⃗′,s⃗′)/Vt⃗′,s⃗′ of V
⊕n

t⃗,s⃗
⊂ socΓ

((
injK(V

t⃗′,s⃗′ )/Vt⃗′,s⃗′

)K1

injK(V
t⃗′,s⃗′ )

K1/V
t⃗′,s⃗′

)
contains L + N . As L ̸⊂ N , L + N = L ⊕ N , and the multiplicity of Vt⃗,s⃗ in

socΓ

((
injK(V

t⃗′,s⃗′ )/Vt⃗′,s⃗′

)K1

injK(V
t⃗′,s⃗′ )

K1/V
t⃗′,s⃗′

)
is ≥ l + n, implying l = 0 by (2.8.1). Therefore,

socΓ(injK(Vt⃗′,s⃗′)
K2/Vt⃗′,s⃗′) ↪→ socΓ(injK(Vt⃗′,s⃗′)/Vt⃗′,s⃗′) is an equality.

□

Since K/K2 is a finite group, Ext1K/K2
(Vt⃗,s⃗, Vt⃗′,s⃗′)

∼= H1(K/K2, V
∨
t⃗,s⃗

⊗Vt⃗′,s⃗′). The
Grothendieck spectral sequence gives us the following left exact sequence:

0 → H1(Γ, V ∨
t⃗,s⃗

⊗ Vt⃗′,s⃗′)
inf−−→ H1(K/K2, V

∨
t⃗,s⃗

⊗ Vt⃗′,s⃗′)
res−−→ H1(K1/K2, V

∨
t⃗,s⃗

⊗ Vt⃗′,s⃗′)
Γ

(2.8.2)

Proposition 2.9. Suppose e > 1. Then the res map in (2.8.2) is a split surjection.

Proof. e > 1 implies that p ∈ π2OK . LetOur
K be the ring of integers for the maximal

unramified subextension inside E over Qp. Therefore k ∼= Our
K /p ↪→ OK/π

2. This
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gives a splitting of the natural surjection GL2(OK/π
2) ↠ GL2(k) ∼= GL2(Our

K /p).
We obtain the following split exact sequence:

1 K1/K2 K/K2 Γ 1

Therefore, K/K2
∼= K1/K2 ⋊ Γ. For b ∈ Γ and a ∈ K1/K2, denote bab

−1 by ab.
Suppose σ is a Γ representation (seen via inflation as a K/K2 representation) and

ψ is a cocycle representing a nonzero element of H1(K1/K2, σ)
Γ. As K1/K2 action

is trivial on σ, H1(K1/K2, σ)
Γ = Z1(K1/K2, σ)

Γ. Γ-invariance means precisely that
for b ∈ Γ and a ∈ K1/K2, b

−1ψ(ab) = ψ(a).
We define a function δ on K1/K2 ⋊ Γ by setting δ((a, b)) equal to ψ(a). I claim

that δ is a cocyle, i.e., δ((a, b)(a′, b′)) = δ((a, b)) + (a, b) · δ((a′, b′)). Evaluation of
the left hand side gives us:

L.H.S. = δ((aa′b, bb′))

= ψ(aa′b)

= ψ(a) + ψ(a′b)

Evaluation of the right hand side gives us:

R.H.S. = ψ(a) + (a, 1)(1, b) · ψ(a′)
= ψ(a) + (1, b) · ψ(a′)

= ψ(a) + (1, b) · ((1, b−1) · ψ(a′b)) (as ψ is Γ-invariant)

= ψ(a) + ψ(a′b)

= L.H.S.

This establishes that δ is a cocyle and therefore, res map in (2.8.2) is a split
surjection.

□

Corollary 2.10. If e > 1,

Ext1K(Vt⃗,s⃗, Vt⃗′,s⃗′) = Ext1Γ(Vt⃗,s⃗, Vt⃗′,s⃗′)⊕HomΓ(Vt⃗,s⃗, H
1(K1/K2, Vt⃗′,s⃗′)).

Proof. This is immediate from Proposition 2.9 and the fact that H1(K1/K2, V
∨
t⃗,s⃗

⊗
Vt⃗′,s⃗′)

Γ ∼= HomΓ(Vt⃗,s⃗, H
1(K1/K2, Vt⃗′,s⃗′)) by the explicit description in Proposi-

tion 2.3. □

Lemma 2.11. Let p > 2, r ≤ p− 3. Then the following are true:

(i) Symr+2F2
embeds into Sym2F2 ⊗ SymrF2

as a direct summand of multi-
plicity 1.

(ii) Let the obvious basis of Symr+2F2
be given by {wkzr+2−k}k∈[0,r+2]. Fur-

ther, let a basis of Sym2F2⊗SymrF2
be given by {x̃j ỹ2−j⊗xkyr−k}(j,k)∈[0,2]×[0,r]

if r > 0, and by {x̃j ỹ2−j ⊗ 1}j∈[0,2] if r = 0. The embedding is given
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(uniquely upto scalar multiplication) as follows:

wkzr+2−k 7→ x̃2 ⊗ k(k − 1)

(r + 2)(r + 1)
xk−2yr+2−k

+2x̃ỹ ⊗ k(r + 2− k)

(r + 2)(r + 1)
xk−1yr+1−k

+ỹ2 ⊗ (r + 2− k)(r + 1− k)

(r + 2)(r + 1)
xkyr−k for k ∈ [2, r]

wzr+1 7→ 2x̃ỹ ⊗ 1

r + 2
yr + ỹ2 ⊗ r

r + 2
xyr−1 if r > 0

wr+1z 7→ x̃2 ⊗ r

r + 2
xr−1y + 2x̃ỹ ⊗ 1

r + 2
xr if r > 0

wz 7→ x̃ỹ ⊗ 1 if r = 0

wr+2 7→ x̃2 ⊗ xr

zr+2 7→ ỹ2 ⊗ yr

Proof. The first statement is from [BP, Prop. 5.4]. The second statement can be
verified by direct computation. □

Lemma 2.12. Let Vt⃗,s⃗, a Serre weight. Denote by {⊗f−1
j=0w

kjzsj−kj}(kj)j the ob-
vious basis of Vt⃗,s⃗. Use the same notation to denote a basis of V ⃗−t−s,s⃗. Then

V ∨
t⃗,s⃗

∼= V ⃗−t−s,s⃗ under the following map:

V ∨
t⃗,s⃗

→ V ⃗−t−s,s⃗

⊗j (w
kjzsj−kj )∨ 7→ ⊗j

(
sj
kj

)
wsj−kj (−z)kj

Proof. By direct computation. □

Lemma 2.13. Let p > 2. Consider a pair of non-isomorphic, non-Steinberg Serre
weights Vt⃗,s⃗ and Vt⃗′,s⃗′ satisfying the condition in Proposition 2.6, that is, si = s′i+2,

sj = s′j for j ̸= i and
∑
j∈T

pf−1−jtj ≡ −pf−1−i +
∑
j∈T

pf−1−jt′j mod pf − 1.

Denote by ⊗f−1
j=0 (w

kjzsj−kj )∨ the dual of ⊗f−1
j=0w

kjzsj−kj , where {⊗f−1
j=0w

kjzsj−kj}(kj)j

gives a basis of Vt⃗,s⃗. Let the basis of Vt⃗′,s⃗′ be given by {⊗f−1
j=0x

k′
jys

′
j−k′

j}(k′
j)j

.

Then the Γ-invariant cocyles of H1(K1/K2, V
∨
t⃗,s⃗

⊗ Vt⃗′,s⃗′)
∼= H1(K1/K2, V−t⃗−s⃗,s⃗ ⊗

Vt⃗′,s⃗′) are a 1-dimensional subspace spanned by

κliA+ ϵiB + κui C

where κli, ϵi and κ
u
i are homomorphisms K1/K2 → F defined in Proposition 2.3 and

A, B and C are elements of V ∨
t⃗,s⃗

⊗ Vt⃗′,s⃗′ defined below.

For s′i > 0,
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A = −

 ∑
(kj)j ̸=i

(⊗j ̸=i

(
sj
kj

)
wsj−kj (−z)kj )⊗ (⊗j ̸=ix

kjys
′
j−kj )

⊗


s′i∑
ki=2

((
si
ki

)
wsi−ki(−z)ki ⊗ ki(ki − 1)

(s′i + 2)(s′i + 1)
xki−2ys

′
i+2−ki

)
+

(
siw(−z)si−1 ⊗ s′i

s′i + 2
xs

′
i−1y

)
+
(
(−z)si ⊗ xs

′
i

)



B =

 ∑
(kj)j ̸=i

(⊗j ̸=i

(
sj
kj

)
wsj−kj (−z)kj )⊗ (⊗j ̸=ix

kjys
′
j−kj )

⊗


s′i∑
ki=2

((
si
ki

)
wsi−ki(−z)ki ⊗ ki(s

′
i + 2− ki)

(s′i + 2)(s′i + 1)
xki−1ys

′
i+1−ki

)
+

(
siw

si−1(−z)⊗ 1

s′i + 2
ys

′
i

)
+

(
siw(−z)si−1 ⊗ 1

s′i + 2
xs

′
i

)



C =

 ∑
(kj)j ̸=i

(⊗j ̸=i

(
sj
kj

)
wsj−kj (−z)kj )⊗ (⊗j ̸=ix

kjys
′
j−kj )

⊗


s′i∑
ki=2

((
si
ki

)
wsi−ki(−z)ki ⊗ (s′i + 2− ki)(s

′
i + 1− ki)

(s′i + 2)(s′i + 1)
xkiys

′
i−ki

)
+

(
siw

si−1(−z)⊗ s′i
s′i + 2

xys
′
i−1

)
+
(
(wsi ⊗ ys

′
i

)


For s′i = 0,

A = −

 ∑
(kj)j ̸=i

(⊗j ̸=i

(
sj
kj

)
wsj−kj (−z)kj )⊗ (⊗j ̸=ix

kjys
′
j−kj )

⊗ ((−z)si ⊗ 1)

B =

 ∑
(kj)j ̸=i

(⊗j ̸=i

(
sj
kj

)
wsj−kj (−z)kj )⊗ (⊗j ̸=ix

kjys
′
j−kj )

⊗ (−wz ⊗ 1)

C =

 ∑
(kj)j ̸=i

(⊗j ̸=i

(
sj
kj

)
wsj−kj (−z)kj )⊗ (⊗j ̸=ix

kjys
′
j−kj )

⊗ (wsi ⊗ 1)
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Proof. The first step is to compute
(
H1(K1/K2, V

∨
t⃗,s⃗

⊗ Vt⃗′,s⃗′)
)Γ

. By Proposition 2.3,

this group is isomorphic to HomΓ(Vt⃗,s⃗,
⊕f−1

i=0 Vt⃗′,s⃗′⊗(V2⊗det−1)Frf−1−i ⊕d
i=1 Vt⃗′,s⃗′).

Using Lemma 2.11, Vt⃗,s⃗ has a unique (upto scalars) embedding into
⊕f−1

i=0 Vt⃗′,s⃗′ ⊗
(V2 ⊗ det−1)Frf−1−i ⊕d

i=1 Vt⃗′,s⃗′ . This embedding may be written as an element of

V ∨
t⃗,s⃗

⊗ Vt⃗′,s⃗′ ⊗ (V2 ⊗ det−1)Frf−1−i ⊂ H1(K1/K2, V
∨
t⃗,s⃗

⊗ Vt⃗′,s⃗′). Employing Proposi-

tion 2.3 to further write this element as an explicit map K1/K2 → V ∨
t⃗,s⃗

⊗ Vt⃗′,s⃗′ , we

obtain the following values of A, B and C:

For s′i > 0,

A = −

 ∑
(kj)j ̸=i

(⊗j ̸=i(w
kjzsj−kj )∨)⊗ (⊗j ̸=ix

kjys
′
j−kj )

⊗


s′i∑
ki=2

(
(wkizsi−ki)∨ ⊗ ki(ki − 1)

(s′i + 2)(s′i + 1)
xki−2ys

′
i+2−ki

)
+

(
(wsi−1z)∨ ⊗ s′i

s′i + 2
xs

′
i−1y

)
+
(
(wsi)∨ ⊗ xs

′
i

)



B =

 ∑
(kj)j ̸=i

(⊗j ̸=i(w
kjzsj−kj )∨)⊗ (⊗j ̸=ix

kjys
′
j−kj )

⊗


s′i∑
ki=2

(
(wkizsi−ki)∨ ⊗ ki(s

′
i + 2− ki)

(s′i + 2)(s′i + 1)
xki−1ys

′
i+1−ki

)
+

(
(wzsi−1)∨ ⊗ 1

s′i + 2
ys

′
i

)
+

(
(wsi−1z)∨ ⊗ 1

s′i + 2
xs

′
i

)



C =

 ∑
(kj)j ̸=i

(⊗j ̸=i(w
kjzsj−kj )∨)⊗ (⊗j ̸=ix

kjys
′
j−kj )

⊗


s′i∑
ki=2

(
(wkizsi−ki)∨ ⊗ (s′i + 2− ki)(s

′
i + 1− ki)

(s′i + 2)(s′i + 1)
xkiys

′
i−ki

)
+

(
wzsi−1)∨ ⊗ s′i

s′i + 2
xys

′
i−1

)
+
(
(zsi)∨ ⊗ ys

′
i

)


For s′i = 0,
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A = −

 ∑
(kj)j ̸=i

(⊗j ̸=i(w
kjzsj−kj )∨)⊗ (⊗j ̸=ix

kjys
′
j−kj )

⊗ ((wsi)∨ ⊗ 1)

B =

 ∑
(kj)j ̸=i

(⊗j ̸=i(w
kjzsj−kj )∨)⊗ (⊗j ̸=ix

kjys
′
j−kj )

⊗(
(wz)∨ ⊗ 1

2

)

C =

 ∑
(kj)j ̸=i

(⊗j ̸=i(w
kjzsj−kj )∨)⊗ (⊗j ̸=ix

kjys
′
j−kj )

⊗ ((zsi)∨ ⊗ 1)

Using Lemma 2.12, we can rewrite elements in V ∨
t⃗,s⃗

as elements of V−t⃗−s⃗,s⃗, giving

us the desired answer. □

Our next order of business is to check if a Γ-invariant cocycle inH1(K1/K2, V
∨
t⃗,s⃗

⊗
Vt⃗′,s⃗′)

∼= H1(K1/K2, V−t⃗−s⃗,s⃗ ⊗ Vt⃗′,s⃗′) is in the image of the res map in (2.8.2).

Therefore, we will try and extend such a cocyle to K. However, instead of extending
it to all of K, we will first focus our attention on extending it to the subgroup of K
generated by the upper unipotent and diagonal matrices.

Proposition 2.14. Let e = 1. Consider a pair of non-isomorphic, weakly reg-
ular Serre weights Vt⃗,s⃗ and Vt⃗′,s⃗′ satisfying the conditions in Proposition 2.6. In

particular,

HomΓ(Vt⃗,s⃗, H
1(K1, Vt⃗′,s⃗′) ̸= 0

Then res is the zero map and inf in (2.8.2) is an isomorphism, implying that
Ext1K(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0 iff Ext1Γ(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0.

Proof. We will show the following stronger result. Let p > 2, and let Vt⃗,s⃗ and Vt⃗′,s⃗′
satisfy:

si = s′i + 2,

sj = s′j for j ̸= i,

s′i+1 < p− 1, and∑
j∈T

pf−1−jtj ≡ −pf−1−i +
∑
j∈T

pf−1−jt′j mod pf − 1.

Then res is the zero map and inf in (2.8.2) is an isomorphism. (Note that the

above conditions on p, s⃗ and s⃗′ are automatically implied by the hypotheses in the
statement of the Proposition.)

We will assume without loss of generality that t⃗′ = 0⃗.
Our proof will show that there is no way to extend a Γ-invariant cocycle ψ ∈

H1(K1/K2, V−t⃗−s⃗,s⃗ ⊗ Vt⃗′,s⃗′) simultaneously to upper unipotent and diagonal ma-

trices with 1 in the bottom right entry. We denote these two groups by U and D

respectively. We let U(α) =

(
1 α
0 1

)
, and D(t) =

(
t 0
0 1

)
.
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First, we give a basis of V−t⃗−s⃗,s⃗ ⊗ Vt⃗′,s⃗′ . We note that:

V−t⃗−s⃗,s⃗ ⊗ Vt⃗′,s⃗′
∼=

(det−s′0 ⊗ Syms′0F2
)Frf−1

⊗ · · · ⊗ (det−s′i−1 ⊗ Syms′i−1F2
)Frf−i

⊗(det−s′i−1 ⊗ Syms′i+2F2
)Frf−1−i

⊗ (det−s′i+1 ⊗ Syms′i+1F2
)Frf−2−i

⊗ . . .

⊗(det−s′f−1 ⊗ Syms′f−1F2
)Fr0


⊗

(det0 ⊗ Syms′0F2
)Frf−1

⊗ (det0 ⊗ Syms′1F2
)Frf−2

⊗ . . .

⊗(det0 ⊗ Syms′f−1F2
)Fr0


This can be viewed as a tensor of 2f terms, each term being a tensor of a

determinant power and a symmetric power. The first f terms correspond to those
coming from V−t⃗−s⃗,s⃗ and for each such term, a basis is given by homogeneous degree
sj monomials in variables w and z. Here, w corresponds to the first standard basis

element of F2
, while z corresponds to the second standard basis element. The last

f terms correspond to those coming from Vt⃗′,s⃗′ and for each such term, a basis

is given by homogeneous degree s′j monomials in variables x and y. As before, x

corresponds to the first standard basis element of F2
, while y corresponds to the

second standard basis element.
Denote by W the F subspace of V−t⃗−s⃗,s⃗ ⊗Vt⃗′,s⃗′ spanned by {(⊗f−1

j=0w
kjzsj−kj )⊗

ys
′
0 ⊗ ys

′
1 ⊗ · · · ⊗ ys

′
f−1}(kj)j . Evidently, W is a quotient as a ⟨U,D⟩ ⊂ K represen-

tation. We now define a further partial order on the indexing set of the basis of W .
Let (kj)j and (k′j)j be two indices, where (kj)j corresponds to the basis element

(⊗f−1
j=0w

kjzsj−kj )⊗ ys
′
0 ⊗ ys

′
1 ⊗ · · · ⊗ ys

′
f−1 while (k′j)j corresponds to the basis el-

ement (⊗f−1
j=0w

k′
jzsj−k′

j )⊗ ys
′
0 ⊗ ys

′
1 ⊗ · · · ⊗ ys

′
f−1 . If k′j ≥ kj for all j, then we say

that (kj)j is a descendant of (k′j)j . More precisely, if
∑
j

(k′j − kj) = n ≥ 0, we say

that (kj)j is a n-descendant of (k′j)j . Alternatively, we say (k′j)j is an n-ascendant
of (kj)j , or (kj)j is a −n-ascendant of (k′j)j , or (k′j)j is a −n-descendant of (kj)j .

Now, take κliA+ϵiB+κui C to be the cocycle defined in Lemma 2.13. Denote by ψ
the restriction of this cocycle to ⟨U,D⟩∩K. Then ψ = ϵiB+κui C. Suppose it has an
extension to ⟨U,D⟩. On composing the extension with the quotient map V−t⃗−s⃗,s⃗ ⊗
Vt⃗′,s⃗′ → W , we obtain a cocycle valued in W , which we denote by q. Denote by

q(kj)j the coordinates of q corresponding to the basis vector (⊗f−1
j=0w

kjzsj−kj ) ⊗
ys

′
0 ⊗ ys

′
1 ⊗ · · · ⊗ ys

′
f−1 . [Cautionary note about the notation: here the exponent of

w is kj , whereas in Lemma 2.13, sj − kj is the exponent of w].
From the definition of ψ, q(kj)j |U∩K ̸= 0 if and only if kj = sj for all j. Further,

q(kj)j |D∩K ̸= 0 if and only if ki = si − 1 = s′i + 1 and kj = sj = s′j for all j ̸= i.

Each (⊗f−1
j=0w

kjzsj−kj ) ⊗ ys
′
0 ⊗ ys

′
1 ⊗ · · · ⊗ ys

′
f−1 ∈ W is an eigenvector for D(t)

with eigenvalue tλ(kj)j , where λ(kj)j is the unique number in [0, pf − 1) that is

equivalent to
∑

j ̸=i p
f−1−j(kj − s′j) + pf−1−i(ki − s′i − 1) mod pf − 1. We make

some observations about λ(kj)j :

(1) λ(kj)j = 0 if and only if ki = s′i + 1 and kj = s′j for all j ̸= i if and only if
q(kj)j |D∩K ̸= 0.
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(2) λ(kj)j are evidently pairwise distinct.

(3) Suppose (kj)j ̸= (sj)j . Then λ(kj)j ̸= pf−1−l for any l ∈ [0, f − 1].

To see this, suppose on the contrary that mod pf − 1,∑
j ̸=i

pf−1−j(kj − s′j) + pf−1−i(ki − s′i − 1) = pf−1−l.

Equivalently,∑
j

pf−1−jkj ≡
∑
j ̸=i

pf−1−js′j + pf−1−i(s′i + 1) + pf−1−l.(2.14.1)

We have three subcases:
• If l = i, then the right hand side of (2.14.1) is

∑
j∈T−{i}

pf−1−jsj . As

each sj is less than or equal to p − 1, and at least one sj is strictly
less than p− 1 (by assumption), kj is forced to equal sj for each j, a
contradiction.

• If l ̸= i and s′l < p − 1, s′l + 1 ≤ p − 1. Further, s′i + 1 < p − 1,
because si = s′i + 2 ≤ p − 1. Therefore, both the right and left hand
sides have all coefficients of pf−1−j less than or equal to p− 1, and at
least one coefficient strictly less than p− 1, forcing right and left hand
side coefficients to be the same. But this is a contradiction, since the
coefficient of pf−1−l clearly differs as for each j, kj ≤ sj .

• If l ̸= i and s′l = p − 1, s′l + 1 = p. By carrying over to obtain the
coefficient of each pf−1−j in the [0, p− 1] range, we see that the right
hand side (2.14.1) is equivalent to a number with the coefficient of
pf−1−m equal to sm+1 for some m ∈ [l−1, i+1]. Thus both the right
and left hand sides can be made to have all coefficients of pf−1−j less
than or equal to p − 1, and at least one coefficient strictly less than
p − 1. Thus the coefficients on the two sides after carry must be the
same. However, km is necessarily ≤ sm, giving a contradiction.

For each (kj)j , since D acts diagonally onW , q(kj)j |D is a cocycle D → F(λ(kj)j ),

where F(λ(kj)j ) is a one-dimensional F-vector space with action of D(t) given by

multiplication with tλ(kj)j . Note that D ∼= O∗
K

∼= k∗× (1+πOK). Therefore, when

q(kj)j |D∩K = 0, q(kj)j |D can be seen as a cocycle k∗ → F(λ(kj)j ). For non-zero

λ(kj)j ,
∑

ξ∈k∗
ξλ(kj)j = 0, because if ξ̃ is the generator of the cyclic group k∗,

ξ̃λ(kj)j

∑
ξ∈k∗

ξλ(kj)j =
∑
ξ∈k∗

(ξ̃ξ)λ(kj)j =
∑
ξ∈k∗

ξλ(kj)j .

It follows that H1(k∗,F(λ(kj)j )) = F/(ξ̃λ(kj)j − 1)F = 0. Therefore, when

q(kj)j |D∩K = 0, there exists a(kj)j ∈ F such that q(kj)j (D(ξ)) = ξλ(kj)j a(kj)j −a(kj)j .
When q(kj)j |D∩K ̸= 0, let a(kj)j = 0. Adjust the cocycle q by the coboundary

given by the vector whose coordinate corresponding to (⊗f−1
j=0w

kjzsj−kj ) ⊗ ys
′
0 ⊗

ys
′
1 ⊗ · · · ⊗ ys

′
f−1 is −a(kj)j . Therefore, we may assume that when q(kj)j |D∩K = 0,

q(kj)j |D = 0. When q(kj)j |D∩K ̸= 0, since λ(kj)j = 0, q(kj)j |D is a group homomor-

phism k∗× (1+πOK) ∼= D → F. Since order of k∗ is prime to p, q(kj)j (D(k∗)) = 0.
Therefore, regardless of (kj)j , we have q(kj)j (D(k∗)) = 0.
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Our next order of business is to understand each q(kj)j |U . Note that U ∼= OK .
Except when kj = sj for all j, q(kj)j |U(πOK) = 0 (as remarked earlier) and therefore,
q(kj)j |U can be seen as a map on OK/π. Since D(ξ)U(α) = U(ξα)D(ξ) for ξ ∈ k∗

and α ∈ OK/π, we have the following for all (kj)j ̸= (sj)j :

ξλ(kj)j q(kj)j (U(α)) = q(kj)j (D(ξ)U(α)) = q(kj)j (U(ξα)D(ξ)) = q(kj)j (U(ξα))

(2.14.2)

Therefore, replacing α with 1 and ξ with α (this covers all the cases since
q(kj)j (U(0)) is already 0 because q(kj)j |U∩K = 0), we obtain for all (kj)j ̸= (sj)j :

q(kj)j (U(α)) = αλ(kj)j q(kj)j (U(1))(2.14.3)

Now, we do an inductive argument to show that q(kj)j |U = 0 for all (kj)j ̸= (sj)j .
Suppose q(kj)j |U = 0 for each m-ascendant (kj)j of (0)j , where −1 ≤ m <

(
∑
j

sj)− 1. The base case with m = −1 is automatic, because (0)j has no descen-

dants. We will show that q(kj)j |U = 0 for each m+ 1-ascendant (kj)j of (0)j .
Fix an m + 1-ascendant (kj)j of (0)j . Take (k′j)j to be a 1-ascendant of (kj)j

(therefore, an m+ 2-ascendant of (0)j).
Since q is a cocycle, we have for each 0 ̸= α ∈ OK/π:

q(k′
j)j

(U(α)) + q(k′
j)j

(U(1))+

∑
(lj)j∈1-descendants

of (k′
j)j

∏
j

(
sj − lj
sj − k′j

)α

∑
j

pf−1−j(k′
j−lj)

q(lj)j (U(1))



= q(k′
j)j

(U(α+ 1))

= q(k′
j)j

(U(1 + α))

= q(k′
j)j

(U(1)) + q(k′
j)j

(U(α)) +
∑

(lj)j∈1-descendants

of (k′
j)j

∏
j

(
sj − lj
sj − k′j

) q(lj)j (U(α))


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Therefore,

∑
(lj)j∈1-descendants

of (k′
j)j

∏
j

(
sj − lj
sj − k′j

)α

∑
j

pf−1−j(k′
j−lj)

q(lj)j (U(1))



=
∑

(lj)j∈1-descendants

of (k′
j)j

∏
j

(
sj − lj
sj − k′j

) q(lj)j (U(α))



=
∑

(lj)j∈1-descendants

of (k′
j)j

∏
j

(
sj − lj
sj − k′j

)αλ(lj)j q(lj)j (U(1))

 (by (2.14.3))

Therefore, each α ∈ k∗ satisfies the following polynomial in x:

∑
(lj)j∈1-descendants

of (k′
j)j

∏
j

(
sj − lj
sj − k′j

) q(lj)j (U(1))xλ(lj)j

−
∑

(lj)j∈1-descendants

of (k′
j)j

∏
j

(
sj − lj
sj − k′j

) q(lj)j (U(1))x

∑
j

pf−1−j(k′
j−lj)

If non-zero, this polynomial is of degree less than pf − 1, with at least |k∗|
distinct roots, a contradiction. Note that

∑
j

pf−1−j(k′j − lj) = pf−1−m(lj) for some

m(lj) ∈ [0, f − 1].

Since λ(kj)j does not equal any of the
∑
j

pf−1−j(k′j − lj) terms, the coefficient of

xλ(kj)j is
(∏

j

(sj−kj

sj−k′
j

))
q(kj)j (U(1)) and it must equal 0. This implies that q(kj)j |U =

0 by (2.14.3).
Finally, we come to the last leg of the proof. Because q(kj)j |U = 0 for each (kj)j ̸=

(sj)j , q(sj)j (U(α + β)) = q(sj)j (U(α)) + q(sj)j (U(β)). Therefore q(sj)j (U(p)) =
pq(sj)j (U(1)) = 0. However, q(sj)j |U∩K = κui |U∩K (from the definition of C in
Lemma 2.13). As p is the uniformizer of OK , κui (U(p)) ̸= 0, giving a contradiction.

□

3. Stack dimensions and extensions of GK characters

Let σ and τ be a pair of non-Steinberg, non-isomorphic Serre weights. We record
a fact from [DDR] and [Ste] that we will use in this section. Suppose χ1 and χ2 are
distinct GK characters such that the subspace of Ext1F[GK ]

(χ2, χ1) corresponding to

representations with Serre weights both σ and τ has dimension d. Suppose χ′
1 and

χ′
2 are unramified twists of χ1 and χ2 respectively. If χ′

1 ̸= χ′
2, then the subspace

of Ext1F[GK ]
(χ′

2, χ
′
1) that corresponds to representations with Serre weights σ and τ

also has dimension d. If on the other hand, χ′
1 = χ′

2, then a (d + 1)-dimensional
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subspace of Ext1F[GK ]
(χ′

2, χ
′
1) corresponds to representations with Serre weights σ

and τ .
We now make a few definitions, before stating our main propositions relating

dimensions of closed substacks of X to vector space dimensions of extensions of GK

characters.

Definition 3.1. Let χ1 and χ2 be a pair of F-valued GK characters. We say that
a set Fχ1,χ2 of GK-representations with F-coefficients is a family of representations
if each representation in Fχ1,χ2

is an extension of an unramified twist of χ2 by an
unramified twist of χ1.

Definition 3.2. Consider Gm ×Gm as parametrizing the unramified twists of χ1

and χ2 via the value of the unramified characters on FrobK . We say that the
family Fχ1,χ2

is of dimension ≤ d (resp. of dimension d) if there exists a dense
open subset W of Gm×Gm such that the following condition is satisfied: if χ′

1 and
χ′
2 are unramified twists of χ1 and χ2 (respectively) corresponding to an F-point

of W , then the extensions in Ext1F[GK ]
(χ′

2, χ
′
1) giving elements of Fχ1,χ2 form a

subspace of dimension ≤ d (resp. of dimension d).

Definition 3.3. We say that two families Fχ1,χ2 and Fχ′
1,χ

′
2
are separated if χ′

1

and χ′
2 are not both unramified twists of χ1 and χ2 respectively.

We now recall some constructions from [EG2, Sec. 5] before stating our main
propositions. We note first that there exist finitely many F-valued characters of
IK that admit extensions to GK . Each such character is in fact valued in F and
is described uniquely by a = (ai)i∈T with each ai ∈ [0, p − 1] and at least some
ai < p − 1. Let A be the set of such f tuples. Then for a ∈ A, the corresponding
IK character is given by

∏
i∈T ω

ai
i |IK . Fix an extension of such a character to GK ,

and denote it by ψa. When each ai = 0, take ψa = 1. When each ai = e and p > 2,
take ψa to be the mod p cyclotomic character, ϵ.

Let M be the rank 1 (φ,Γ)-module over Gm := Spec F[x, x−1] generated by
some v ∈ M such that φ(v) = xv and Γ action is trivial. By applying the functor
D defined in [EG1, Sec. 3.6], we obtain a set of (φ,Γ)-modules {D(ψa)}a∈A defined
over F. Let Ma denote the (φ,Γ)-module D(ψa) ⊠ M defined over Gm. For a
subscheme Spec R ⊂ Gm, we will denote by Ma|Spec R the (φ,Γ)-module obtained
by changing scalars to R. Let Xa = Gm when ψa is not trivial or cyclotomic, and
let Xa = Gm ∖ {1} when ψa is trivial or cyclotomic.

The cohomology groups of C•(Ma|Xa
), the Herr complex associated toMa|Xa

by
[EG1, Sec. 5], vanish in degrees 0 and 2 (the latter by Tate local duality). Therefore,
as the cohomology group in degree 1 gives a coherent sheaf on Xa of constant rank
[K : Qp] by the local Euler characteristic formula, it is a locally free sheaf. Denoting
the total space of this sheaf by Va, we obtain a space parameterizing extensions of
D(1) by Ma|Xa , the former viewed as a (φ,Γ)-module over Xa by extension of
scalars from F to the global sections on Xa. Thus, for each b ∈ A, twisting further
by Mb, there exists a map

fa,b : Va ×Gm → X
corresponding to the universal extension of D(1)⊠Mb by Ma|Xa ⊠Mb. Note that
Gm ×Gm acts on extensions of D(1)⊠Mb by Ma|Xa ⊠Mb, for e.g. as described in
[EG2, Sec. 7.3]. Since D(1) ̸=Ma|Xa

, the induced map

fa,b : (Va ×Gm)/(Gm ×Gm) → X
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is a monomorphism. There exists a map

πa,b : Va ×Gm → Ba,b := Xa ×Gm

induced by the structure map Va → Xa and the identity map Gm → Gm. The map
πa,b corresponds to choices of unramified twists of D(ψa) and D(ψb) respectively.

Now, we consider the Herr complex associated to D(1), denoted C•(D(1)). Each
of the cohomology groups is a finite dimensional vector space over F. The con-
siderations in [EG2, Sec. 5.4] show that for any F-algebra R, H1(C•(D(1)R)) =
H1(C•(D(1)) ⊗ R, where D(1)R is the (φ,Γ)-module obtained from D(1) by ex-
tending the scalars to R. Therefore, the total space of the invertible sheaf on SpecF
corresponding to H1(C•(D(1)) parameterizes extensions of D(1) by itself. Thus,
denoting this total space by V1, we can define a map

f1,b : V1 ×Gm → X

giving the universal extension of D(1)⊠Mb by D(1)⊠Mb. In this case, in addition
to Gm × Gm, there is an action of the upper unipotent group U on extensions of
D(1)⊠Mb by D(1)⊠Mb, thus giving a map

f1,b : (V1 ×Gm)/(Gm ×Gm × U) → X .

Denote by π1,b the projection of V1 ×Gm onto the second factor.
Finally, when p > 2, we consider the Herr complex associated to D(ϵ), denoted

C•(D(ϵ)). As before, viewing the finite dimensional degree 1 cohomology group as
an invertible sheaf on a point, the total space gives a vector bundle Vϵ defined over
Spec F that parameterizes extensions of D(1) by D(ϵ). Thus, we have a map

fϵ,b : Vϵ ×Gm → X

giving the universal extension of D(1)⊠Mb by D(ϵ)⊠Mb. The induced map

f ϵ,b : (Vϵ ×Gm)/(Gm ×Gm) → X

is a monomorphism. Denote by πϵ,b the projection of Vϵ × Gm onto the second
factor.

By construction, each finite type point of X corresponding to a reducible repre-
sentation is in the image of one of the (finitely many) fa,b, f1,b and fϵ,b maps.

Now, consider the set of isomorphism classes of irreducible 2-dimensional rep-
resentations defined over F. For each such representation ρ, there exists a map
SpecF → X , which in turn can be used to write a map fρ : Gm → X corresponding
to D(ρ)⊠M . The finite type points in the image correspond to all the unramified
twists of ρ. Since the automorphisms of irreducible representations are precisely
the invertible scalars, fρ factors via the monomorphism

fρ : [Gm/Gm] → X .

Since there are only finitely many isomorphism classes of irreducible 2-dimensional
representations upto unramified twists, the finite type points of X corresponding
to irreducible representations lie in the image of one of fρ for finitely many ρ.

Fix non-Steinberg Serre weights σ and τ . Denoting by E the intersection of Xσ

with Xτ , for each a ∈ A, let Ya,b := E ×X2 Va,b. We also define Y1,b := E ×X2 V1,b
and Yϵ,b := E ×X2

Vϵ,b. The maps πa,b|Ya,b
, π1,b|Y1,b

and πϵ,b|Yϵ,b
will henceforth be

written simply as πa,b, π1,b and πϵ,b.
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Proposition 3.4. Let d ≥ 0. Suppose all families of representations contained
in E(F) are of dimension ≤ d, and moreover, E(F) contains at least one family of
dimension d. Then the following are true:

(i) E has dimension d.
(ii) If d > 0, the number of d-dimensional components in E equals the number

of d-dimensional pairwise separated families contained in E.
(iii) Let d = 0, and let

C := {ρ : GK → GL2(F) | ρ is semisimple}/ ∼
where ρ ∼ ρ′ if ρ and ρ′ are isomorphic as IK representations. Then the
number of d-dimensional components in E equals |C|.

The proof of this proposition will use the following lemmas.

Lemma 3.5. Let χ1 and χ2 be fixed GK characters. Suppose E(F) contains a
family Fχ1,χ2

of representations of dimension d. Suppose moreover that there is no

other family of extensions of χ2 by χ1 contained in E(F) with dimension > d. Let
a, b ∈ A be such that ψb is an unramified twist of χ2, while ψa⊗ψb is an unramified
twist of χ1. Then the following are true:

(i) The dimension of the scheme-theoretic image of Ya,b is ≤ d.
(ii) The number of d-dimensional components in the scheme-theoretic image of

Ya,b is at most 1.

Proof. (i) Let q be a closed point of Ba,b, and after fixing an embedding κ(q) ↪→
F, let q be the corresponding F-point of Ba,b. By the construction of Ba,b,

representations coming from Ya,b(F) are never an extension of a character
by itself. Therefore, the hypotheses in the statement of the Lemma force
π−1
a,b(q)(F) to be a vector space of dimension ≤ d. We have:

Since the F-points of π−1
a,b(q) form a vector space, the reduced induced

closed subscheme of π−1
a,b(q) must be cut out by homogeneous linear equa-

tions in Va,b ×Gm ×κ(q) and thus be irreducible of dimension equal to the

F-vector space dimension of π−1
a,b(q)(F).

Let S be an irreducible component of Ya,b. Denote by fa,b(S) the scheme-
theoretic image of S. By [Sta, Tag 0DS4], there exists a dense set U ⊂ S

such that for any p ∈ U(F), the dimension of fa,b(S) is given by:

dim fa,b(S) = dim S − dimp(Sfa,b(p)) = dimpS − dimp(Sfa,b(p))

where,

dimpS ≤ dim π−1
a,b(πa,b(p)) + dim (πa,b(S))

Restrict U further if necessary so that it is disjoint from other irreducible
components of Yj . Then for p a closed point in U , since π−1

a,b(πa,b(p)) is
irreducible, it is contained entirely in some irreducible component of Ya,b.

By the conditions on U , π−1
a,b(πa,b(p)) ⊂ S. Therefore, dimp(Sfa,b(p)) =

dimp(Ya,b)fa,b(p). Since fa,b|Ya,b
factors through the quotient Ya,b/(Gm ×

Gm), we obtain:

dimp(Sfa,b(p)) = dimp(Ya,b)fa,b(p) = 2

Therefore the dimension of scheme-theoretic image of S is ≤ d − (2 −
dim (πa,b(S))) ≤ d.

https://stacks.math.columbia.edu/tag/0DS4
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(ii) For i ∈ {1, 2}, suppose Si is an irreducible component of Ya,b with a scheme-
theoretic image of dimension d. Let U i be the dense open subset of Si

obtained by taking the complement of all other irreducible components of
Ya,b. Therefore, πa,b(U i) = πa,b(Si) = Ba,b. Since πa,b(U

i) is constructible,
it contains a dense open W i of Ba,b. Let W = W 1 ∩W 2. If q is a closed

point of W , π−1
a,b(q) is irreducible and contained entirely in at least one

irreducible component of Ya,b. But since for each i, π−1
a,b(q) ∩ U i is non-

empty and disjoint from all irreducible components of Ya,b apart from Si,
S1 must be the same as S2. This shows that at most one irreducible
component of Ya,b can have a d-dimensional scheme-theoretic image.

□

Lemma 3.6. For each b ∈ A, the scheme theoretic images of fϵ,b and of f1,b are
strictly less than d.

Proof. The proof follows the same ideas as the proof of Lemma 3.5. The reduction
in dimension for the scheme-theoretic image of f1,b arises from the fact that π1,b :
V1 × Gm → Gm has dimension 1 less than the target of πa,b along with the fact
that f1,b factors through (V1×Gm)/(Gm×Gm×U). When p > 2, the reduction in
dimension for the scheme-theoretic image of fϵ,b arises from the fact that the target
of the map πϵ,b : Vϵ ×Gm → Gm has dimension 1 less than the target of πa,b. □

Lemma 3.7. Let χ1 and χ2 be fixed GK characters. Suppose E(F) contains a
family Fχ1,χ2

of representations of dimension d. Suppose moreover that there is no

other family of extensions of χ2 by χ1 contained in E(F) with dimension > d. Let
a, b ∈ A be such that ψb is an unramified twist of χ2, while ψa⊗ψb is an unramified
twist of χ1. Then the scheme-theoretic image of Ya,b has dimension d.

Proof. By the construction of Ba,b, representations coming from Ya,b(F) are never
extensions of a character by itself. Therefore, for each unramified twist of χ1 and
χ2 coming from twisting ψa⊗ψb and ψb by unramified characters corresponding to
F-points of Ba,b, the space of extensions giving representations contained in E(F)
is precisely d-dimensional.

As πa,b is of finite type over an integral scheme, there exists a dense open W of
Ba,b such that over W , πa,b is flat.

Let q be a closed point of W . Fix an embedding of κ(q) into F to view q as
a F-point q. By hypothesis, (Ya,b)q(F) has the structure of a F-vector space of
dimension d. Therefore, (Ya,b)q (and hence (Ya,b)q) is irreducible of dimension d.

By flatness overW , dim Ya,b|W = dim (Ya,b)q+2 = d+2. Therefore, there exists

an irreducible component S of Ya,b|W with dimension d+2. Denote by fa,b(S) the
scheme-theoretic image of S. As in the proof of Lemma 3.5, there exists a dense
open subset U of S, such that for all p ∈ U ,

dim fa,b(S) = dim S − dimp(Sf(p))

and

dimp(Sfa,b(p)) = 2

Therefore, the dimension of fa,b(S), and of Ya,b, is precisely d (it cannot exceed
d by Lemma 3.5). □
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Proof of Proposition 3.4. Recall that each reducible representation is in the literal
image of either fa,b or f1,b or f1,b for some a, b ∈ A. Moreover, irreducible rep-
resentations contribute to finitely many zero-dimensional substacks of E by the
description of the maps fρ for ρ irreducible.

Therefore, the first statement follows from Lemmas 3.5 and 3.6, which also show
that each d-dimensional family contains precisely one d-dimensional component in
its closure.

Now assume that Y is a top dimensional component in E contained in the closure
of two separated d-dimensional families Fχ1,χ2 and Fχ′

1,χ
′
2
. Then there exist unique

a, a′, b, b′ ∈ A so that (ψa, ψb) and (ψa′ , ψb′) are unramified twists of (χ1, χ2) and
(χ′

1, χ
′
2) respectively. Therefore, Y is in the scheme-theoretic image of both Ya,b

and Ya′,b′ (this uses Lemma 3.6 which shows that the scheme-theoretic image of
Y1,b and Yϵ,b is necessarily of dimension less than d).

Let W (resp. W ′) be a dense open subset of Ba,b (resp. Ba′,b′) for each q ∈
Ba,b(F) (resp. q ∈ Ba′,b′(F)), each F point of (Ya,b)q (resp. (Ya′,b′)q) corresponds
to a representation contained in Fχ1,χ2 (resp. Fχ′

1,χ
′
2
).

By the arguments in Lemma 3.7, Y is contained in the scheme-theoretic image of
an irreducible component S (resp. S′) of Ya,b|W (resp. Y ′

a,b|W ′). Since the images

of |S| and of |S′| in |Y| are constructible sets dense in Y, there exists a dense open
U of |Y| contained in both |S| and |S′|. If (a, b) ̸= (a′, b′), then this means that
(a, b) = (b′, a′) and U contains only split extensions. Therefore, families of split
extensions are dense in Y. If d > 0, this is an impossibility because the split locus
correspond to a dimension 2 closed substack of Ya,b whose scheme-theoretic image
has dimension 0 by the arguments in Lemmas 3.5 and 3.7. This settles the second
statement, and along with the fact that the image of each fρ is 0-dimensional,
settles the third statement as well. □

4. Computations of Serre weights

4.1. Linear algebraic formulation for Serre weights of GK-representations.
In the subsequent text, we will write our f -tuples with decreasing indices. We recall
some relevant results from [Ste] and [DDR] below. Let ρ be a GK representation

of the form

(
χ1 ∗
0 χ2

)
∈ Ext1GK

(F(χ2),F(χ1)).

Vt⃗,s⃗ is a Serre weight of ρ∨ if and only if Vt⃗,s⃗ is a Serre weight of ρ in the sense

of [Ste] and [DDR]. Thus Vt⃗,s⃗ is a Serre weight of ρ∨ iff the following conditions
are met:

(1) There exists a subset J of T , and for each i ∈ T there exists xi ∈ [0, e− 1]
such that:

χ1|IK =
∏
i∈T

ωti
i

∏
i∈J

ωsi+1+xi
i

∏
i∈Jc

ωxi
i(4.1.1)

and

χ2|IK =
∏
i∈T

ωti
i

∏
i∈J

ωe−1−xi
i

∏
i∈Jc

ωsi+e−xi
i(4.1.2)
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(2) ρ ∈ LVt⃗,s⃗
(F(χ1),F(χ2)) ⊂ Ext1GK

(F(χ2),F(χ1)), where LVt⃗,s⃗
(F(χ1),F(χ2))

(or just LVt⃗,s⃗
if χ1 and χ2 are understood) is a particular distinguished

subspace.

Assuming (4.1.1) and (4.1.2), we now note the recipe for obtaining LVt⃗,s⃗
as given

in [Ste], with slight differences in notation.
We first write χ2|IK =

∏
i∈T ω

ti
i

∏
i∈T ω

mi
i for the unique mi ∈ [0, p − 1] with

not all mi equal to p − 1. Let S be the set of f -tuples of non-negative integers
(af−1, af−2, ..., a0) satisfying χ2|IK =

∏
i∈T ω

ti
i

∏
i∈T ω

ai
i and ai ∈ [0, e− 1] ∪ [si +

1, si + e] for all i. Evidently, S is non-empty.
For i ̸= f − 1, let vi be the f -tuple (0, ..., 0, p,−1, 0, ..., 0) with −1 in i position,

p in i+ 1 position and 0 everywhere else. Let vf−1 be (−1, 0, ..., 0, p). Then there
exists a subset A ⊂ T such that

(mf−1, ...,m0) +
∑
i∈A

vi ∈ S(4.1.3)

Definition 4.2. Define Amin to be the minimal A satisfying (4.1.3), in the sense
that it is contained in any other subset of T satisfying (4.1.3).

Definition 4.3. Given (mf−1, ...,m0) and Amin as above.

(yf−1, ..., y0) := (mf−1, ...,m0) +
∑

i∈Amin

vi ∈ S(4.3.1)

zi := si + e− yi for all i(4.3.2)

The indices of yi’s and zi’s will be interpreted to be elements of Z/fZ.

Remark 4.4. χ1 =
∏

i∈T ω
zi
i

∏
i∈T ω

ti
i , χ2 =

∏
i∈T ω

yi

i

∏
i∈T ω

ti
i and χ−1

2 χ1 =∏
i∈T ω

zi−yi

i .

Definition 4.5. If yi ≥ si + 1, let Ii := [0, zi − 1], and if yi < si + 1, let Ii :=
{yi} ∪ [si + 1, zi − 1]. Here the interval [0, zi − 1] is interpreted as the empty set if
zi − 1 < 0. We follow similar convention for [si + 1, zi − 1] when zi − 1 < si + 1.

Remark 4.6. When e = 1, Ii = {0} if yi = 0 and Ii = ∅ if yi = si + 1.

Remark 4.7. If yi ≥ si+1, then |Ii| ≤ e− 1 with equality if and only if yi = si+1.
If yi < si +1, then since zi ≤ si + e, |Ii| ≤ e with equality if and only if zi = si + e
or equivalently, yi = 0.

Suppose χ−1
2 χ1 =

∏
i∈T ω

ai
i for ai ∈ [1, p] and not all ai = p. We will extend the

indices of the ai to all of Z by setting aj = aj′ if j ≡ j′ mod f . We call the tuple

(af−1, ..., a0) the tame signature of χ−1
2 χ1. Gal(k/Fp) = ⟨Frob⟩ ∼= Z/fZ acts on

such tuples (af−1, ..., a0) via

Frob · (af−1, ..., a0) = (a0, af−1, ..., a1)(4.7.1)

Let f ′ be the cardinality of the orbit of (af−1, ..., a0) under the action of Gal(k/Fp),
and let f ′′ := f/f ′.

Definition 4.8. Let ni ∈ [0, pf − 1) be such that χ−1
2 χ1|IK = ωni

i |IK .

Note that ni = nj iff i ≡ j mod f ′.
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Definition 4.9. For i ∈ T , let

λi :=

f−1∑
j=0

(zi+j+1 − yi+j+1)p
f−1−j(4.9.1)

ξi := (pf − 1)zi + λi(4.9.2)

Definition 4.10. Let JAH
Vt⃗,s⃗

(χ1, χ2) denote the subset of all α = (m,κ) ∈ Z ×
{0, ..., f ′′ − 1} satisfying:

(i) ∃i ∈ T and u ∈ Ii, such that if ν is the p-adic valuation of ξi − u(pf − 1),
then

m =
ξi − u(pf − 1)

pν
(4.10.1)

(ii) Let im ∈ {0, ..., f ′−1} be such that m ≡ nim mod pf −1. It exists because
by the above, pνm ≡ ni mod pf − 1, and so, m ≡ ni−ν . We require that κ
satisfies

im + κf ′ ≡ i− ν mod f(4.10.2)

By [Ste, Prop. 3.13], for each i ∈ T and u ∈ Ii, there exists a unique α satisfying
the conditions above. By [Ste, Thm. 3.16], each α in JAH

Vt⃗,s⃗
(χ1, χ2) gives a unique

basis element of LVt⃗,s⃗
(χ1, χ2), denoted as cα. LVt⃗,s⃗

(χ1, χ2) is the span of cα’s

together with additional, distinguished basis elements cun if χ−1
2 χ1 is trivial and

ctr if χ
−1
2 χ1 is cyclotomic,

∏
i∈T ω

−ti ⊗ χ2 is unramified and si = p− 1 for all i. A
consequence of these results is that

dimFLVt⃗,s⃗
(χ1, χ2) =

∑
i∈T

|Ii|+ δ(4.10.3)

where δ depends on the situation and could be 0 or 1 for p > 2, and 0, 1 or 2 for
p = 2. It is always 0 if χ−1

2 χ1 is neither trivial nor cyclotomic.
Consider two Serre weights Vt⃗,s⃗ and Vt⃗′,s⃗′ . Suppose there exist subsets J and J ′

of T , and for each i ∈ T , there exist xi, x
′
i ∈ [0, e− 1] such that:

χ1|IK =
∏
i∈T

ωti
i

∏
i∈J

ωsi+1+xi
i

∏
i∈Jc

ωxi
i =

∏
i∈T

ω
t′i
i

∏
i∈J′

ω
s′i+1+x′

i
i

∏
i∈J′c

ω
x′
i

i(4.10.4)

and

χ2|IK =
∏
i∈T

ωti
i

∏
i∈J

ωe−1−xi
i

∏
i∈Jc

ωsi+e−xi
i =

∏
i∈T

ω
t′i
i

∏
i∈J′

ω
e−1−x′

i
i

∏
i∈J′c

ω
s′i+e−x′

i
i

(4.10.5)

Then a basis for the intersection of LVt⃗,s⃗
(χ1, χ2) with LV

t⃗′,s⃗′
(χ1, χ2) is given by

cα for α ∈ JAH
Vt⃗,s⃗

(χ1, χ2) ∩ JAH
V
t⃗′,s⃗′

(χ1, χ2), together with cun and/or ctr if χ−1
2 χ1 is

trivial and/or cyclotomic with some additional conditions.
When e = 1, there is another algorithm to specify a basis of LVt⃗,s⃗

(χ1, χ2), given

in [DDR]. We recall some essentials of this algorithm because it will be conve-
nient/shorter to use it for some of the calculations in the unramified case.
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Definition 4.11. Let Jmax := {i ∈ Z/fZ|yi = 0}, where yi are as defined in
Definition 4.3.

Definition 4.12. Let (af−1, ..., a0) be the tame signature of χ−1
2 χ1. The func-

tion δ : Z → Z is defined in the following way: For j ∈ Z, δ(j) = j unless
(ai−1, ai−2, ..., aj) = (p, p − 1, ..., p − 1) for some j < i, in which case δ(j) = i.
When j = i− 1, the condition (ai−1, ai−2, ..., aj) = (p, p− 1, ..., p− 1) is interpreted
as aj = p.
δ induces a function Z/fZ → Z/fZ, also denoted by δ.
Let J be a subset of Z/fZ. If δ(J) ⊂ J , µ(J) := J . Else choose some [i1] ∈

δ(J)∖ J and let j1 be the largest integer such that j1 < i1, [j1] ∈ J and δ(j1) = i1.
If J = {[j1], ..., [jr]} with j1 > j2 > ... > jr > j1 − f , define iκ for κ ∈ [2, r]
inductively as follows:

iκ =

{
δ(jκ), if iκ−1 > δ(jκ)

jκ, otherwise

Then µ(J) := {[i1], ..., [ir]}.

When e = 1, LVt⃗,s⃗
(χ1, χ2) has a basis given by certain elements of Ext1GK

(F(χ2),F(χ1))

indexed by τ ∈ µ(Jmax) along with cun and/or ctr if χ−1
2 χ1 is trivial and/or cyclo-

tomic with some additional conditions.
We now state the criterion for determining the Serre weights associated to an

irreducible GK representation, when K = Qp. It can be stated for arbitrary K,
but this paper will only need the case K = Qp.

Let ρ be an irreducible GQp representation. Let η1 and η2 be the two level 2

fundamental characters of IQp
. V ∨

t,s is a Serre weight of ρ∨ iff ρ = ηt+s
1 ηt2 ⊕ ηt1η

t+s
2 .

4.13. Translation from Linear Algebra to Geometry of Stacks. Let Vt⃗,s⃗ and
Vt⃗′,s⃗′ be non-isomorphic, non-Steinberg Serre weights. The closure of irreducible

F-representations is 0-dimensional. Thus, unless K = Qp, we only need to consider
closures of families of reducible representations in order to detect codimension 1
intersections between irreducible components. On the other hand, if K = Qp, then
by Proposition 3.4, we additionally need to consider when XVt,s ∩ XVt′,s′ contains
irreducible finite type points. This last point is dealt with easily.

Lemma 4.14. When K = Qp, XVt,s ∩XVt′,s′ contains irreducible finite type points

if and only if s′ = p− 1− s and t′ ≡ t+ s mod p− 1.

Proof. By the algorithm for computing Serre weights, we need to determine when

ηt+s
1 ηt2 ⊕ ηt1η

t+s
2 = ηt

′+s′

1 ηt
′

2 ⊕ ηt
′

1 η
t′+s′

2 .

Since Vt,s and Vt′,s′ are non-isomorphic and non-Steinberg, the relationship between
(t, s) and (t′, s′) follows immediately. □

Remark 4.15. The criterion in the statement of Lemma 4.14 is the same as that in
Proposition 2.1(ii)(b).

Using Proposition 3.4, we can state a sufficient (and necessary when K ̸= Qp)
condition for XVt⃗,s⃗

∩ XV
t⃗′,s⃗′

to be codimension 1: there exist GK characters χ1

and χ2 so that after replacing χ1 and χ2 by generic unramified twists, the subspace



INTERSECTIONS OF COMPONENTS OF EMERTON-GEE STACK FOR GL2 27

{ρ | Vt⃗,s⃗, Vt⃗′,s⃗′ ∈W (ρ)} ⊂ Ext1GK
(F(χ−1

1 ),F(χ−1
2 )) has dimension ef−1. By generic

unramified twists we mean that if we let Gm × Gm parametrize the unramified
twists of χ1 and χ2 via the value of the unramified characters on FrobK , then the
statement is true for the points of a dense open subset of Gm ×Gm. Equivalently,
LVt⃗,s⃗

(χ1, χ2) ∩ LV
t⃗′,s⃗′

(χ1, χ2) ⊂ Ext1GK
(F(χ2),F(χ1)) is spanned by ef − 1 basis

elements excluding cun and ctr.
Therefore, we must find GK characters χ1 and χ2 such that there exist subsets

J and J ′ of T , and for each i ∈ T , there exist xi, x
′
i ∈ [0, e − 1] such that (4.10.4)

and (4.10.5) are satisfied. We next require that |JAH
Vt⃗,s⃗

(χ1, χ2) ∩ JAH
V
t⃗′,s⃗′

(χ1, χ2)| =
ef − 1. This can happen in one of two ways.

Definition 4.16. We say that a pair of Serre weights Vt⃗,s⃗ and Vt⃗′,s⃗′ have a type

I intersection witnessed by (χ1, χ2) if |JAH
Vt⃗,s⃗

(χ1, χ2)| = ef while |JAH
V
t⃗′,s⃗′

(χ1, χ2)| =
ef−1. The ordering of the pair of Serre weights is not important for this definition.

Definition 4.17. We say that a pair of Serre weights Vt⃗,s⃗ and Vt⃗′,s⃗′ have a type

II intersection witnessed by (χ1, χ2) if J
AH
Vt⃗,s⃗

(χ1, χ2) = JAH
V
t⃗′,s⃗′

(χ1, χ2) of cardinality

ef − 1.

We will say that the number of separated families in a type I (resp. type II)
intersection for the Serre weights Vt⃗,s⃗ and Vt⃗′,s⃗′ is n if there exist exactly n pairs

of GK characters that witness the type I (resp. type II) intersection, such that
each pair is distinct from all others upon restriction to IK . By Proposition 3.4,
if K ̸= Qp, the number of irreducible components of XVt⃗,s⃗

∩ XV
t⃗′,s⃗′

of dimension

[K : Qp]− 1 equals the number of separated families in either a type I or a type II
intersection for the Serre weights Vt⃗,s⃗ and Vt⃗′,s⃗′ .

For the remainder of this article, we may assume that s⃗, s⃗′ do not have all com-
ponents equal to p− 1 since we are excluding Steinberg components from analysis.
Finally, since we are interested in intersections of different irreducible components,
we may assume that Vt⃗,s⃗ ̸= Vt⃗′,s⃗′ .

Lemma 4.18. |JAH
Vt⃗,s⃗

(χ1, χ2)| = ef if and only if χ1 =
∏

i∈T ω
si+e
i

∏
i∈T ω

ti
i and

χ2|IK =
∏

i∈T ω
ti
i .

Proof. By Remarks 4.4 and 4.7, |JAH
Vt⃗,s⃗

(χ1, χ2)| = ef implies that χ1|IK =
∏

i∈T ω
zi
i =∏

i∈T ω
si+e
i and χ2|IK =

∏
i∈T ω

yi

i = 1. On the other hand, starting with these
χ1 and χ2, we can compute Amin as in Definition 4.2. In this case, we observe
that (mf−1, ...,m0) = (0, ..., 0) as χ2|IK = 1. J = ∅ satisfies the criterion for Amin,
and we obtain that yi = 0 and zi = si + e for all i. By Remark 4.7, we get that
|JAH

V0⃗,s⃗
(χ1, χ2)| = ef , as desired. □

Definition 4.19. Let χ1, χ2 be two characters and Vt⃗,s⃗ be a Serre weight satisfying
the conditions in Lemma 4.18. Then, we say that Vt⃗,s⃗ is the highest weight associ-

ated to the pair (χ1, χ2). It is uniquely determined since not all si can be p − 1.
Moreover, knowing the highest weight determines the pair (χ1, χ2) after restriction
to IK .

Let V ∨
t⃗,s⃗

= Vt⃗,s⃗. Then for any ρ∨ ∈ Ext1GK
(F(χ2),F(χ1)), we say that XVt⃗,s⃗

is the

highest weight component containing ρ.
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Remark 4.20. The number of separated families in a type I intersection can be at
most 2, because one of the two Serre weights has to be the highest weight.

Lemma 4.21. |JAH
V
t⃗′,s⃗′

(χ1, χ2)| = ef−1 if and only if one of the following conditions

is satisfied:

(i) There exists an i ∈ T such that χ1 = ωe−1
i

∏
j ̸=i ω

sj+e
j

∏
j∈T ω

tj
j and χ2 =

ωsi+1
i

∏
j∈T ω

tj
j , and moreover, si ≤ p− 2, and if f = 1 then si < p− 2.

(ii) e = 1, f > 1 and there exists an i ∈ T such that χ1 = ωe−1
i

∏
j ̸=i ω

sj+e
j

∏
j∈T ω

tj
j ,

χ2 = ωsi+1
i

∏
j∈T ω

tj
j , si = p− 1 and si−1 > 0.

(iii) e > 1 and there exists an i ∈ T such that χ1 = ωsi+e−1
i

∏
j ̸=i ω

sj+e
j

∏
j∈T ω

tj
j ,

χ2 = ωi

∏
j∈T ω

tj
j , and si ̸= 0.

In the first two situations above, yi = si + 1 and yj = 0 for all j ̸= i (recall
Definition 4.3). On the other hand, if yi = si+1 and yj = 0 for all j ̸= i, then one
of the two above must be satisfied.

The third situation is equivalent to yi = 1, yj = 0 for all j ̸= i along with si ̸= 0.

Proof. By Remark 4.7, if |JAH
V
t⃗′,s⃗′

(χ1, χ2)| = ef − 1 then one of the following two

conditions must be satisfied:

(i) There exists i ∈ T such that yi = si +1 and for j ̸= i, yj = 0. This implies

that χ1 = ωe−1
i

∏
j ̸=i ω

sj+e
j

∏
j∈T ω

tj
j and χ2 = ωsi+1

i

∏
j∈T ω

tj
j . On the

other hand, starting with such χ1 and χ2, twisting them by
∏

j∈T ω
−tj
j and

applying the recipe to compute Amin (Definition 4.10), yj and zj (Defini-
tion 4.3), we branch into two scenarios:
(a) If si ≤ p−2 for f > 1 and < p−2 for f = 1, then Amin = ∅, yi = si+1

and yj = 0 for j ̸= i, giving |JAH
Vt⃗,s⃗

(χ1, χ2)| = ef − 1.

(b) If si = p− 1, then χ2 ⊗
∏

j∈T ω
−tj
j =

∏
j∈T ω

mj

j , where mi−1 = 1 and
mj = 0 if j ̸= i− 1. Note that this automatically implies that f > 1,
since we are assuming our Serre weights are non-Steinberg. We can
obtain the desired values of yj ’s if and only if (mf−1, ...,m0) is not
already in S of Definition 4.2. In other words, if and only if e = 1 and
si−1 ̸= 0.

(ii) There exists i ∈ T such that yi = 1, si ̸= 0 (this is to enforce distinction
from the condition above) and yj = 0 when j ̸= i. Note that this auto-

matically implies that e > 1, and that χ1 = ωsi+e−1
i

∏
j ̸=i ω

sj+e
j

∏
j∈T ω

tj
j

and χ2 = ωi

∏
j∈T ω

tj
j . On the other hand, starting with such χ1 and χ2,

twisting them by
∏

j∈T ω
−tj
j and applying the recipe to compute Amin, yj

and zj , we obtain that Amin = ∅, yi = 1 and yj = 0 for i ̸= j, and we get
the correct cardinality of JAH

Vt⃗,s⃗
(χ1, χ2).

□

Remark 4.22. In the cases Lemma 4.21(i) and Lemma 4.21(ii),

χ−1
2 χ1 = ωe−2−si

i

∏
j ̸=i

ω
sj+e
j
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In the case Lemma 4.21(iii),

χ−1
2 χ1 = ωe−2+si

i

∏
j ̸=i

ω
sj+e
j

Remark 4.23. When e = 1, the cases Lemma 4.21(i) and Lemma 4.21(ii) are to-
gether equivalent to Jmax = Z/fZ ∖ [i].

Before launching into computations of Type I and II intersections, we introduce

some more notation. When comparing f -tuples s⃗ and s⃗′, we will often only state
the values of si and s′i that have specific constraints or are potentially different
from each other. If the values of si or s′i are not specified, then we assume that
si = s′i. If no range is specified for si, we mean that beyond any relations that it
must satisfy with respect to s′i, the value of si can be anything in [0, p−1]. Further,
if we say (..., si, ...) = (...,∈ [a, b], ...), we mean that si can take any value ∈ [a, b].
Similar notational assumptions apply with the roles of si and s′i interchanged.
Finally, we say that a tuple (bf−1, bf−2, ..., b0) is equivalent to (b′f−1, b

′
f−2, ..., b

′
0) if∑f−1

j=0 bjp
f−1−j ≡

∑f−1
j=0 b

′
jp

f−1−j mod pf − 1.
We will retain the symbols yi, zi, Ii, λi and ξi as defined in Definitions 4.3, 4.5

and 4.9 for Vt⃗,s⃗, and will replace them respectively with y′i, z
′
i, I ′

i, λ
′
i and ξ′i for

Vt⃗′,s⃗′ and with y′′i , z
′′
i , I ′′

i , λ
′′
i and ξ′′i for Vt⃗′′,s⃗′′ .

5. Type I intersections

In this section, we will compute criteria for existence of a pair of characters
(χ1, χ2) witnessing a type I intersection for Serre weights Vt⃗,s⃗ and Vt⃗′,s⃗′ , with

|JAH
Vt⃗,s⃗

(χ1, χ2)| = ef and |JAH
V
t⃗′,s⃗′

(χ1, χ2)| = ef − 1. |JAH
V
t⃗′,s⃗′

(χ1, χ2)| = ef − 1 can

happen via one of three ways as enumerated in Lemma 4.21. In all three situations,
we may assume without loss of generality that i in the statements of Lemma 4.21(i),
Lemma 4.21(ii) and Lemma 4.21(iii) is f − 1. We will also count the number of
families contributing to a type I intersection when Vt⃗,s⃗ and Vt⃗′,s⃗′ are both weakly

regular. (In the general case, the information can still be gleaned directly from
the computations that follow, but we omit the explicit description for the sake of
clarity).

5.1. Type I intersections when f = 1. We will omit subscripts of components
of f -tuples in this section as f = 1.

5.1.1. Case 1. : |JAH
V
t⃗′,s⃗′

(χ1, χ2)| = ef − 1 via Lemma 4.21(i).

Suppose p = 2. The non-Steinberg condition requires that s = s′ = 0. Plugging
in s and s′ in the expressions for χ2 (using Lemmas 4.18 and 4.21), we get t ≡ t′+1
mod p − 1. This gives t = t′ and shows that Vt⃗,s⃗ and Vt⃗′,s⃗′ are isomorphic, a

contradiction. Therefore, we may assume p > 2.
Comparing the two ways of writing χ−1

2 χ1, we obtain:

s+ e ≡ e− 2− s′ mod p− 1 ⇐⇒
s′ ≡ −2− s ≡ p− 3− s mod p− 1

This gives one of the following two situations:

(1) s ≤ p− 3 =⇒ s′ = p− s− 3.
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(2) s = p− 2 =⇒ s′ = p− 2.

In both situations, comparing the two ways of writing χ2, we obtain that t′ +
s′ + 1 ≡ t mod p− 1. In other words t′ ≡ t+ p− s′ − 2 ≡ t+ s+ 1 mod p− 1.

The second situation therefore implies that Vt⃗,s⃗ = Vt⃗′,s⃗′ , which is a contradiction.

The first situation is equivalent to the conditions in Proposition 2.1(ii)(a) imply-
ing that Ext1F[GL2(k)]

(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0. Since it is symmetric in s and s′, whenever

Ext1F[GL2(k)]
(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0, there exist two separated families witnessing a type I

intersection for Vt⃗,s⃗ and Vt⃗′,s⃗′ .

5.1.2. Case 2. : |JAH
V
t⃗′,s⃗′

(χ1, χ2)| = ef − 1 via Lemma 4.21(iii). Implicit in this case

is e > 1 and p > 2, the latter since s′ is not allowed to be 0.
Comparing the two ways of writing χ−1

2 χ1, we obtain:

s+ e ≡ e− 2 + s′ mod p− 1 ⇐⇒
s′ ≡ s+ 2 mod p− 1(5.1.1)

This gives one of the following two situations:

(1) s < p− 3 =⇒ s′ = s+ 2.
(2) s = p− 3 =⇒ s′ = 0.
(3) s = p− 2 =⇒ s′ = 1.

In both situations, comparing the two ways of writing χ2, we obtain that t′ ≡
−1 + t ≡ p− 2 + t mod p− 1. By comparing with Proposition 2.1, we notice that
the first situation implies HomGL2(k)(Vt⃗,s⃗, H

1(GK , Vt⃗′,s⃗′)) ̸= 0 (Proposition 2.6),

the second implies Ext1F[GL2(k)]
(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0 via Proposition 2.1(ii)(a) and the

third implies Ext1F[GL2(k)]
(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0 via Proposition 2.1(ii)(b). Notice that

the relationship between s and s′ is asymmetric in all three situations, unless p = 3
in which case the second and third situations are symmetric.

The above calculations may be summarized in the following proposition:

Proposition 5.2. Let f = 1. A Type I intersection occurs with non-isomorphic,
non-Steinberg Serre weights Vt⃗,s⃗ and Vt⃗′,s⃗′ if and only if one of the following holds
true:

(i) Ext1F[GL2(k)]
(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0 via Proposition 2.1(ii)(a). In this case, 2 fam-

ilies witness the type I intersection.
(ii) e > 1 and HomGL2(k)(Vt⃗,s⃗, H

1(GK , Vt⃗′,s⃗′)) ̸= 0. In this case, 1 family

witnesses the type I intersection.
(iii) e > 1 and s = p − 2, s′ = 1, d′ ≡ −1 + d mod p − 1. In this case, the

number of families witnessing the type I intersection is 1 unless p = 3, in
which case the number is 2.

Note that the non-isomorphic, non-Steinberg condition automatically forces p >
2. Further, the last statement implies Ext1F[GL2(k)]

(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0 via Proposi-

tion 2.1(ii)(b).

5.3. Type I intersections when f > 1.
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5.3.1. Case 1. : |JAH
V
t⃗′,s⃗′

(χ1, χ2)| = ef − 1 via Lemma 4.21(i) or via Lemma 4.21(ii).

Comparing the two ways of writing χ−1
2 χ1, we obtain the following equivalences

mod pf − 1 upto translating all indices by a fixed element of Z/fZ:∑
j∈T

pf−1−j(sj + e) ≡ e− 2− s′f−1 +

f−2∑
j=0

pf−1−j(s′j + e) ⇐⇒

∑
j∈T

pf−1−jsj ≡ − 2− s′f−1 +

f−2∑
j=0

pf−1−js′j

≡ p− s′f−1 − 2 + p(s′f−2 − 1) +

f−3∑
j=0

pf−1−js′j

Therefore, for a fixed s⃗, s⃗′ is forced to be unique since each s′i ∈ [0, p − 1], and
the non-Steinberg condition requires that not all s′i can be p − 1. Similarly, for a

fixed s⃗′, s⃗ is forced to be unique.
We have a number of possible cases :

(i) Suppose s′f−1 ≤ p−2, s′f−2 = s′f−3 = ... = s′f−i = 0 and s′f−1−i ≥ 1, where
i ≥ 1.

(p− s′f−1 − 2, s′f−2 − 1, s′f−3, ..., s
′
f−i, s

′
f−1−i, s

′
f−2−i, ..., s

′
0) ≡

(p− s′f−1 − 2,−1, 0, ..., 0, s′f−1−i, s
′
f−2−i, ..., s

′
0) ≡

(p− s′f−1 − 2, p− 1, p− 1, ..., p− 1, s′f−1−i − 1, s′f−2−i, ..., s
′
0)

Therefore, sf−1 = p − s′f−1 − 2, sf−2 = sf−3 = ... = sf−i = p − 1,

sf−1−i = s′f−1−i − 1 ≤ p− 2 and sj = s′j for all the remaining j’s.

(ii) Suppose s′f−1 ≤ p− 3, s′f−2 = s′f−3 = ... = s′0 = 0.

(p− s′f−1 − 2, s′f−2 − 1, s′f−3, ..., s
′
0) ≡ (p− s′f−1 − 2,−1, 0, ..., 0)

≡ (p− s′f−1 − 3, p− 1, p− 1, ..., p− 1)

We get sf−1 = p− s′f−1 − 3 ≤ p− 3, sf−2 = sf−3 = ... = s0 = p− 1.

(iii) Suppose s′f−1 = p− 2, s′f−2 = s′f−3 = ... = s′0 = 0.

(p− s′f−1 − 2, s′f−2 − 1, s′f−3, ..., s
′
0) ≡ (0,−1, 0, ..., 0)

≡ (p− 1, p− 2, p− 1, ..., p− 1)

Hence, sf−2 = p− 2 and all the other sj ’s equal p− 1.

The remaining cases require |JAH
V
t⃗′,s⃗′

(χ1, χ2)| = ef − 1 via Lemma 4.21(ii), and

implicitly, e = 1.

(iv) Suppose s′f−1 = p− 1, s′f−2 > 1.

(p− s′f−1 − 2, s′f−2 − 1, s′f−3, ..., s
′
0) ≡ (−1, s′f−2 − 1, s′f−3, ..., s

′
0)

≡ (p− 1, s′f−2 − 2, s′f−3, ..., s
′
0)

Therefore, sf−1 = p−1, sf−2 = s′f−2−2 and sj = s′j for the remaining j’s.
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(v) Suppose f > 2, s′f−1 = p− 1, s′f−2 = 1, s′f−3 = s′f−4 = ... = s′f−i = 0 and

s′f−1−i ≥ 1 for some i > 2.

(p− s′f−1 − 2, s′f−2 − 1, s′f−3, ..., s
′
f−i, s

′
f−1−i, s

′
f−2−i, ..., s

′
0) ≡

(−1, 0, 0, ..., 0, s′f−1−i, s
′
f−2−i, ..., s

′
0) ≡

(p− 1, p− 1, p− 1, ..., p− 1, s′f−1−i − 1, s′f−2−i, ..., s
′
0)

Therefore, sf−1 = sf−2 = ... = sf−i = p − 1, sf−1−i = s′f−1−i − 1 and

sj = s′j for all the other j’s.

(vi) Suppose f = 2, s′f−1 = p− 1, s′f−2 = 1.

(p− s′f−1 − 2, s′f−2 − 1) ≡ (−1, 0) ≡ (p− 2, p− 1)

Therefore, sf−1 = p− 2 and sf−2 = p− 1.

(vii) Suppose f > 2, s′f−1 = p− 1, s′f−2 = 1 and s′f−3 = ... = s′0 = 0.

(p− s′f−1 − 2, s′f−2 − 1, s′f−3, ..., s
′
0) ≡ (−1, 0, 0, ..., 0)

≡ (p− 2, p− 1, p− 1, ..., p− 1)

Therefore, sf−1 = p− 2 and sj = p− 1 for all the other j’s.

The results of the computations are summarized in the proposition below.

Proposition 5.4. Let f > 1. Consider pairs (s⃗, s⃗′) satisfying:

•
∏f−1

j=0 ω
sj
j = ω

−s′f−1−2

f−1

∏f−2
j=0 ω

s′j
j , where sj , s

′
j ∈ [0, p− 1];

• Not all sj, as well as not all s′j, are p− 1.
• y′f−1 = s′f−1 + 1 and y′j = 0 for j ̸= f − 1 (y′j are as defined in Defini-

tion 4.3).

Below is an enumeration of all such pairs.

(i) (sf−1, sf−2, ..., sf−i, sf−1−i) = (∈ [0, p−2], p−1, ..., p−1,∈ [0, p−2]), where
i ∈ [1, f − 1];
(s′f−1, s

′
f−2, ..., s

′
f−i, s

′
f−1−i) = (p− sf−1 − 2, 0, ..., 0, sf−1−i + 1).

(ii) (sf−1, sf−2, ..., s0) = (∈ [0, p− 3], p− 1, ..., p− 1);
(s′f−1, s

′
f−2, ..., s

′
0) = (p− 3− sf−1, 0, ..., 0).

This only makes sense if p ≥ 3.

(iii) (sf−1, sf−2, sf−3, ..., s0) = (p− 1, p− 2, p− 1, ..., p− 1);
(s′f−1, s

′
f−2, s

′
f−3, ..., s

′
0) = (p− 2, 0, 0, ..., 0).

When e = 1, we additionally have:

(iv) (sf−1, sf−2) = (p− 1,∈ [0, p− 3]);
(s′f−1, s

′
f−2) = (p− 1, sf−2 + 2).

This only makes sense if p ≥ 3.

(v) f > 2,
(sf−1, sf−2, sf−3, ..., sf−i, sf−1−i) = (p−1, p−1, p−1, ..., p−1,∈ [0, p−2]),
where i ∈ [2, f − 1];
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(s′f−1, s
′
f−2, s

′
f−3..., s

′
f−i, s

′
f−1−i) = (p− 1, 1, 0, ..., 0, sf−1−i + 1).

(vi) f = 2,
(sf−1, sf−2) = (p− 2, p− 1);
(s′f−1, s

′
f−2) = (p− 1, 1).

(vii) f > 2,
(sf−1, sf−2, sf−3, ..., s0) = (p− 2, p− 1, p− 1, ..., p− 1);
(s′f−1, s

′
f−2, s

′
f−3, ..., s

′
0) = (p− 1, 1, 0, ..., 0).

Comparing the two ways of writing χ2, we obtain:∑
j∈T

pf−1−jt′j + (s′f−1 + 1) ≡
∑
j∈T

pf−1−jtj mod pf − 1 ⇐⇒

∑
j∈T

pf−1−jt′j ≡ −1− s′f−1 +
∑
j∈T

pf−1−jtj mod pf − 1(5.4.1)

5.4.1. Case 2. : |JAH
V
t⃗′,s⃗′

(χ1, χ2)| = ef − 1 via Lemma 4.21(iii). Implicit in this case

is that e > 1.
Comparing the two ways of writing χ−1

2 χ1, we obtain the following equivalences
mod pf − 1:∑

j∈T

pf−1−j(sj + e) ≡ e− 2 + s′f−1 +
∑

j ̸=f−1

pf−1−j(s′j + e) ⇐⇒

∑
j∈T

pf−1−j(sj + 1) ≡ s′f−1 − 1 +
∑

j ̸=f−1

pf−1−j(s′j + 1) ⇐⇒

∑
j∈T

pf−1−jsj ≡ s′f−1 − 2 +
∑

j ̸=f−1

pf−1−js′j(5.4.2)

Proposition 5.5. Let f > 1 and e > 1.

Consider pairs (s⃗, s⃗′) satisfying:

•
∏f−1

j=0 ω
sj
j = ω

s′f−1−2

f−1

∏f−2
j=0 ω

s′j
j , where sj , s

′
j ∈ [0, p− 1];

• Not all sj, as well as not all s′j, are p− 1. Also, s′f−1 ̸= 0

• y′f−1 = 1 and y′j = 0 for j ̸= f − 1 (y′j are as defined in Definition 4.3).

• After reindexing if necessary, s⃗ and s⃗′ satisfy one of the below:
(i) sf−1 ≤ p− 3;

s′f−1 = sf−1 + 2.
This only makes sense if p ≥ 3.

(ii) (sf−1, sf−2, ..., sf−i, sf−1−i) = (p−1, p−1, ..., p−1,∈ [0, p−2]), where
i ≥ 1;
(s′f−1, s

′
f−2, ..., s

′
f−i, s

′
f−1−i) = (1, 0, ..., 0, sf−i−1 + 1).

(iii) (sf−1, sf−2, ..., s0) = (p− 2, p− 1, ..., p− 1);
(s′f−1, s

′
f−2, ..., s

′
0) = (1, 0, ..., 0).

Comparing the two ways of writing χ2, we obtain:
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∑
j∈T

pf−1−jt′j ≡ −1 +
∑
j∈T

pf−1−jtj mod pf − 1(5.5.1)

It is evident that when each si and each s′i is < p− 1, the relationship between
s⃗ and s⃗′ described in Propositions 5.4 and 5.5 is asymmetric.

The calculations for type 1 intersections are summarized below.

Proposition 5.6. Let f > 1. Vt⃗,s⃗ and Vt⃗′,s⃗′ be a pair of non-isomorphic, non-

Steinberg Serre weights. Then there exist GK characters χ1 and χ2 such that
|JAH

Vt⃗,s⃗
(χ1, χ2)| = ef , |JAH

V
t⃗′,s⃗′

(χ1, χ2)| = ef − 1 if and only if one of the following

is satisfied:

(i) Upto translating the indices by any fixed number, s⃗ and s⃗′ satisfy one of the

conditions in Proposition 5.4 while t⃗ and t⃗′ satisfy (5.4.1) .

(ii) Upto translating the indices by any fixed number, s⃗ and s⃗′ satisfy one of the

conditions in Proposition 5.5 while t⃗ and t⃗′ satisfy (5.5.1).

Corollary 5.7. Suppose f > 1 and Vt⃗,s⃗ and Vt⃗′,s⃗′ are two non-isomorphic weakly

regular Serre weights. Then there exists a type I intersection for the pair if and
only if one of the following holds (upto translating the indices by any fixed number
and/or interchanging Vt⃗,s⃗ and Vt⃗′,s⃗′ if necessary):

(i) s⃗ and s⃗′ satisfy Proposition 5.4(i) with i = 1; while t⃗ and t⃗′ satisfy (5.4.1).

(ii) s⃗ and s⃗′ satisfy Proposition 5.5(i); while t⃗ and t⃗′ satisfy (5.5.1).

In other words, if and only if one of the following is true:

(i) Ext1F[GL2(k)]
(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0, or

(ii) e > 1 and HomGL2(k)(Vt⃗,s⃗, H
1(GK , Vt⃗′,s⃗′)) ̸= 0

Equivalently, if and only if Ext1F[GL2(OK)]
(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0.

Moreover, exactly 1 family witnesses the type I intersection. When f = 2, s1 = p−1
2 ,

s0 = p−3
2 , s′1 = p−3

2 and s′0 = p−1
2 , interchanging s⃗ and s⃗′ also satisfies Proposi-

tion 5.4(i) after shifting the indices by 1. However, in this case the computations

of t⃗ and t⃗′ show that the situation is not symmetric, and we still have just 1 family
witnessing the intersection.

Proof. By Propositions 2.1, 2.6 and 2.14 and corollary 2.10. □

6. Type II intersections

In this section, we will compute criteria for existence of a pair of characters
(χ1, χ2) witnessing a type II intersection for (non-isomorphic and non-Steinberg)
Serre weights Vt⃗′,s⃗′ and Vt⃗′′,s⃗′′ . Thus, we will determine if χ1 and χ2 exist such that

JAH
V
t⃗′,s⃗′

(χ1, χ2) = JAH
V
t⃗′′,s⃗′′

(χ1, χ2) of cardinality ef − 1. We will denote the highest

weight associated to the pair by Vt⃗,s⃗. A family witnessing a type II intersection
necessarily also witnesses two type I intersections, one for the Serre weights Vt⃗,s⃗
and Vt⃗′,s⃗′ , and the other for Vt⃗,s⃗ and Vt⃗′′,s⃗′′ , thus it gives a triple intersection of

codimension 1. On the other hand, every such triple intersection must involve a
type II intersection.

6.1. Type II intersections when f = 1. We will omit subscripts of components
of f -tuples in this section as f = 1.
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6.1.1. Case 1. : |JAH
Vt′,s′

(χ1, χ2)| = |JAH
Vt′′,s′′

(χ1, χ2)| = ef−1, both via Lemma 4.21(i)

or both via Lemma 4.21(iii). It is immediate that this forces Vt⃗′,s⃗′ and Vt⃗′′,s⃗′′ to be

isomorphic, a contradiction.

6.1.2. Case 2. : |JAH
Vt′,s′

(χ1, χ2)| = ef − 1 via Lemma 4.21(i) (Lemma 4.21(ii) is

not possible because non-Steinberg); |JAH
Vt′′,s′′

(χ1, χ2)| = ef −1 via Lemma 4.21(iii).

Lemma 4.21(iii) assumes that e > 1.
Comparing ways of writing χ−1

2 χ1 using Remark 4.22, we have

e− 2− s′ ≡ e− 2 + s′′ ≡ s+ e mod p− 1

⇐⇒ s′′ ≡ p− 1− s′,(6.1.1)

s′ ≡ p− 3− s,

s′′ ≡ s+ 2

Comparing ways of writing χ2 using Lemma 4.21, we obtain:

s′ + 1 + t′ ≡ 1 + t′′ ≡ t mod p− 1

⇐⇒ t′′ ≡ t′ + s′(6.1.2)

t′ ≡ t+ s+ 1

t′′ ≡ −1 + t

By stipulation in Lemma 4.21(i), s′ ̸= p − 2. Therefore, s′ ≤ p − 3, and since
(t′, s′) ̸= (t′′, s′′), s < p− 3, the equivalences in (6.1.1) are equalities and p > 3.

Notice the nature of type I intersection for Vt⃗,s⃗ and Vt⃗′,s⃗′ . It corresponds to

Ext1F[GL2(k)]
(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0 via Proposition 2.1(ii)(a). On the other hand, the type I

intersection for Vt⃗,s⃗ and Vt⃗′′,s⃗′′ corresponds to HomGL2(k)(Vt⃗,s⃗, H
1(GK , Vt⃗′′,s⃗′′)) ̸= 0.

Imposing the above conditions, we now calculate y′, y′′, z′, z′′, I ′, I ′′, ξ′ and ξ′′,
and compare JAH

Vt′,s′
(χ1, χ2) with J

AH
Vt′′,s′′

(χ1, χ2).

By Lemma 4.21, y′ = s′ + 1 and z′ = e − 1, while y′′ = 1 and z′′ = s′′ + e − 1.
Therefore

I ′ = [0, e− 2]

I ′′ = {1} ∪ [s′′ + 1, s′′ + e− 2]

ξ′ = (p− 1)(e− 1) + (e− 2− s′)

ξ′′ = (p− 1)(s′′ + e− 1) + (e− 2 + s′′)

As u′ varies in I ′, ξ′−u′(p−1) = (p−1)v′+(e−2−s′) with v′ taking up values
in [1, e− 1]. Similarly, as u′′ varies in I ′′,

ξ′′ − u′′(p− 1) = (p− 1)v′′ + (e− 2 + s′′) where v′′ ∈ [1, e− 2] ∪ {s′′ + e− 2}
= (p− 1)v′′ + e− 2− s′ + (p− 1) where v′′ ∈ [1, e− 2] ∪ {p− 3− s′ + e}
= (p− 1)v′′ + e− 2− s′, where v′′ ∈ [2, e− 1] ∪ {p− 2− s′ + e}

By Definition 4.10, JAH
Vt′,s′

(χ1, χ2) = JAH
Vt′′,s′′

(χ1, χ2) if and only if for all v′ ∈
[1, e− 1], there exists a v′′ ∈ [2, e− 1] ∪ {p− 2− s′ + e} such that:



36 KALYANI KANSAL

(p− 1)v′ + (e− 2− s′)

pν′ =
(p− 1)v′′ + (e− 2− s′)

pν′′(6.1.3)

where ν′ is the p-adic valuation of the numerator on L.H.S, while ν′′ is that of
the numerator on R.H.S.

The only thing to check then is that (6.1.3) holds for v′ = 1 and v′′ = p−2−s′+e.
Plugging in,

L.H.S. =
p− 3− s′ + e

pν
(6.1.4)

R.H.S. =
(p− 1)(p− 2− s′ + e) + e− 2− s′

pν′′ =
p(p− 3− s′ + e)

pν′+1
= L.H.S.

(6.1.5)

Therefore, conditions (6.1.1) and (6.1.2) guarantee a type II intersection, and are
equivalent to the conditions in Proposition 2.1(ii)(b). In this case, the relationship
between the pairs (t′, s′) and (t′′, s′′) is symmetric except when s′ = 1 and s′′ = p−2.
Therefore the calculations show the existence of 2 separated families (because the
highest weights are distinct) witnessing the type II intersection except when s′ = 1
and s′′ = p− 2. In the special case s′ = 1 and s′′ = p− 2, there is just 1 family.

Summarizing these findings, we have the proposition below.

Proposition 6.2. Let f = 1. If Vt⃗′,s⃗′ and Vt⃗′′,s⃗′′ are a pair of non-isomorphic,

non-Steinberg Serre weights, then a type II intersection occurs for the pair if and
only if e > 1, p > 3 and Ext1GL2(k)(Vt⃗′,s⃗′ , Vt⃗′′,s⃗′′) ̸= 0 via Proposition 2.1(ii)(b). In

addition, the following statements are true:

• If (χ1, χ2) witness the type II intersection, then one of the two corresponding
type I intersections witnessed by (χ1, χ2) arises via Proposition 5.2(i). The
other arises via Proposition 5.2(ii).

• Each type II intersection is witnessed by 2 separate families except when
s′ = 1 and s′′ = p− 2, in which case just one family witnesses it.

6.3. Type II intersections when f > 1, e = 1. We will use the algorithm in
[DDR] for this section. Our objective is to find the conditions on Vt⃗′,s⃗′ and Vt⃗′′,s⃗′′
so that µ(J ′

max) = µ(J ′′
max) of cardinality f − 1, where J ′

max is the subset of Z/fZ
satisfying the conditions in Definition 4.11 for Vt⃗′,s⃗′ while J

′′
max is the corresponding

subset for Vt⃗′′,s⃗′′ .

We will find these intersections in two steps. First, we will find Vt⃗′,s⃗′ and Vt⃗′′,s⃗′′
such that J ′

max = Z/fZ − {[f − 1]}, J ′′
max = Z/fZ − {[f − 1 − i]} for some i ∈

[0, f−1], and ω
−s′f−1−1

f−1

∏
j∈T∖{f−1} ω

s′j+1

j = ω
−s′′f−1−i−1

i

∏
j∈T∖{f−1−i} ω

s′′j +1

j . The

assumption that J ′
max = Z/fZ−{[f − 1]} does not cause any loss of generality. In

the second step, we will compute µ(J ′
max) and µ(J

′′
max), and identify the situations

in which they are the same.
For the first step, we will use the results of Proposition 5.4. Specifically, if

a Vt⃗′,s⃗′ exists with J ′
max = Z/fZ − {[f − 1]}, then there exists a non-Steinberg

Vt⃗,s⃗ so that the pair (s⃗, s⃗′) satisfies one of the conditions enumerated in Propo-
sition 5.4. This is simply a consequence of Lemma 4.21. Similarly, we can find
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a non-Steinberg V ⃗̃
d,⃗̃s

so that the pair (⃗̃s, s⃗′′) satisfies one of the conditions enu-

merated in Proposition 5.4 after adding i to each index. Since we are impos-

ing
∏

j∈T ω
sj
j = ω

−s′f−1−2

f−1

∏
j∈T∖{f−1} ω

s′j
j = ω

−s′′f−1−i−2

i

∏
j∈T∖{f−1−i} ω

s′′j +2

j =∏
j∈T ω

s̃j
j , we have s⃗ = ⃗̃s. Therefore, in the first step we are looking for vectors s⃗

that show up in more than one items of the list in Proposition 5.4 (after translating
the indices by adding some fixed integer if necessary). If such a s⃗ exits, we will
say that the two items in the list can be cycled with each other, and that one item

is a cycling of the other. The corresponding two s⃗′’s (in the notation of the list

in Proposition 5.4) give us our candidate (s⃗′, s⃗′′) and the reindexing informs us
what i should be. In this situation, since χ−1

2 χ1 must equal
∏

j∈T ω
si+1
i , the tame

signature (af−1, ..., a0) = (sf−1 + 1, ..., s0 + 1).
For instance, consider the f -tuple x⃗ with (xf−1, xf−2, ..., xf−m, xf−1−m) = (∈

[0, p−2], p−1, ..., p−1,∈ [0, p−2]) for somem ∈ [1, f−4], (xf−1−i, xf−2−i, ..., xf−i−k) =
(p− 1, p− 1, ..., p− 1) for some i ∈ [m+1, f − 3], k ∈ [2, f − 1− i] and xf−1−i−k ∈
[0, p − 2]. Clearly, x⃗ satisfies the conditions required of s⃗ showing up in Proposi-
tion 5.4(i). If we reindex x⃗, adding i to the indices mod f , then we see that x⃗ can
show up as the s⃗ in Proposition 5.4(v). That is, Proposition 5.4(i) can be cycled with

Proposition 5.4(v). The corresponding two s⃗′ (in the notation of Proposition 5.4)

that show up in Proposition 5.4(i) and Proposition 5.4(v) are our candidates for s⃗′

and s⃗′′ respectively (in the notation of this proposition). The reindexing tells us
that J ′

max ought to be Z/fZ∖{[f −1]} and J ′′
max ought to be Z/fZ∖{[f −1− i]}.

For the second step, we note that δ(f − 2 − i) = f − 1 − i. Similarly, δ(f −
3 − i) = f − 2 − i and so on until δ(f − i − k) = f − i − k + 1. Therefore
f − i− k ̸∈ µ(J ′′

max), which implies that µ(J ′′
max) = Z/fZ∖ {[f − i− k]}. Similarly,

δ(f − 2) = f − 1 and if m > 1, we observe that δ causes an increase in index right
until f −m, so that δ(f −m) = f + 1−m. This forces f − 1−m ∈ µ(J ′

max) and
eventually, f − i − k ∈ µ(J ′

max). If m = 1, f − 2 −m is in µ(J ′
max) again forcing

f − i− k ∈ µ(J ′
max). Hence µ(J ′

max) ̸= µ(J ′′
max).

We repeat this process by finding all possible cyclings and computing µ(J ′
max)

and µ(J ′′
max). Instead of showing details for all computations, we will give an

outline. Each s⃗ showing up in the list items of Proposition 5.4 has constraints for
the components positioned in some specific way relative to the indices f − 1 and
f − 1 − m for some m (In the notation of Proposition 5.4, the symbol i is used
instead of m. Here we are using i differently, to indicate the translation of indices).
If this s⃗ shows up in another list item after reindexing by adding i mod f , the
constraints for the reindexed second list item will have a description relative to
indices f − 1 and f − 1 − n for some n. After undoing the reindexing, we may
expect to see constraints on s⃗ components positioned in a specific away around the
indices given by f − 1 and f − 1−m (as posed by the specifications of the first list
item), and f − 1− i and f − 1− i− n (as posed by the specifications of the second
list item). We will use this notation in the outline below.

(1) Proposition 5.4(i) can be cycled with Proposition 5.4(iv) in the following
possible ways:
(a) i ∈ [m + 1, f − 2]. Then µ(J ′′

max) excludes f − 1 − i. If m > 1,
µ(J ′

max) excludes f −m. If m = 1, µ(J ′
max) excludes f −1. Therefore,

µ(J ′′
max) ̸= µ(J ′

max).
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(b) i = m− 1 ≥ 1. Again, µ(J ′′
max) excludes f − 1− i = f −m. The same

holds true for µ(J ′
max) and we have µ(J ′′

max) = µ(J ′
max).

(2) Proposition 5.4(i) can be cycled with Proposition 5.4(v) in the following
possible ways:
(a) i ∈ [m+ 1, f − 3] and f − 1− i− n ̸≡ f − 1 mod f . The calculations

in the example above show that µ(J ′
max) ̸= µ(J ′′

max).
(b) i ∈ [m + 1, f − 3] and f − 1 − i − n ≡ f − 1 mod f . Here, µ(J ′′

max)
excludes 0, whereas µ(J ′

max) includes it, making them unequal.
(c) i ∈ [1,m−2] and f−1− i−n = f−1−m. Here µ(J ′

max) and µ(J
′′
max)

are both of cardinality f − 1 and exclude f −m. Therefore, they are
equal.

(3) Proposition 5.4(ii) can be cycled with Proposition 5.4(iv) with i = f − 1.
µ(J ′′

max) excludes f − 1 − i = 0. The same is true for µ(J ′
max), which is

thus equal to µ(J ′′
max).

(4) Proposition 5.4(ii) can be cycled with Proposition 5.4(v) with any i ∈
[1, f − 2]. In this case, both µ(J ′

max) and µ(J ′′
max) exclude 0. They are

therefore equal.
(5) Proposition 5.4(iii) can be cycled with Proposition 5.4(v) with i ∈ [0, f −

1]∖ {1}. Both µ(J ′
max) and µ(J

′′
max) exclude f − 1, and are equal.

(6) Proposition 5.4(iii) can be cycled with Proposition 5.4(vi) with i = 1. Both
µ(J ′

max) and µ(J
′′
max) exclude f − 1, and are equal.

(7) Proposition 5.4(iii) can be cycled with Proposition 5.4(vii) with i = 1. Both
µ(J ′

max) and µ(J
′′
max) exclude f − 1, and are equal.

(8) Proposition 5.4(iv) can be cycled with Proposition 5.4(v):
(a) i > 1, f − 1− i−n = f − 2. Both µ(J ′

max) and µ(J
′′
max) exclude f − 1

and are equal.
(b) i > 1, f − 1 − i − n ̸= f − 2. µ(J ′

max) exlucdes f − 1, while µ(J ′′
max)

excludes f − i− n. Therefore, µ(J ′
max) ̸= µ(J ′′

max).
(9) Proposition 5.4(v) can be cycled with Proposition 5.4(vii) with i = m. Both

µ(J ′
max) and µ(J

′′
max) exclude f − i and are equal.

Proposition 6.4. Let f > 1, e = 1. There exists a pair of GK characters (χ1, χ2)
of highest weight Vt⃗,s⃗ witnessing a type II intersection for Vt⃗′,s⃗′ and Vt⃗′′,s⃗′′ if and

only if after translating the indices by adding some fixed integer, there exists an
i ∈ T such that the following are true:

(i) s′f−1+1+
∑f−1

j=0 p
f−1−jt′j ≡ pi(s′′f−1−i+1)+

∑f−1
j=0 p

f−1−jd′′j ≡
∑f−1

j=0 p
f−1−jtj

mod pf − 1.

(ii) The vectors s⃗′, s⃗′′ and s⃗ satisfy one of the following conditions:
(a) (s′f−1, s

′
f−2, ..., s

′
f−1−i, s

′
f−2−i) = (∈ [0, p − 2], 0, ..., 0,∈ [1, p − 2]) for

some i ∈ [1, f − 2];

(s′′f−1, s
′′
f−2, ..., s

′′
f−1−i, s

′′
f−2−i) = (p−s′f−1−2, p−1, ..., p−1, s′f−2−i+

1);

(sf−1, sf−2, ..., sf−1−i, sf−2−i) = (p−s′f−1−2, p−1, ..., p−1, s′f−2−i−
1).
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(b) f > 2 and (s′f−1, s
′
f−2, ..., s

′
f−1−i, s

′
f−2−i, s

′
f−3−i, ..., s

′
f−m, s

′
f−1−m) =

(∈ [0, p− 2], 0, ..., 0, 0, 0, ..., 0,∈ [1, p− 1]) for some m ∈ [3, f − 1];

(s′′f−1, s
′′
f−2, ..., s

′′
f−1−i, s

′′
f−2−i, s

′′
f−3−i, ..., s

′′
f−m, s

′′
f−1−m) = (p−s′f−1−

2, p− 1, ..., p− 1, 1, 0, ..., 0, s′f−1−m) where i ∈ [1,m− 2];

(sf−1, sf−2, ..., sf−1−i, sf−2−i, sf−3−i, ..., sf−m, sf−1−m) = (p−s′f−1−
2, p− 1, ..., p− 1, p− 1, p− 1, ..., p− 1, s′f−1−m − 1).

(c) i = f − 1 and (s′f−1, s
′
f−2, ..., s

′
1, s

′
0) = (∈ [0, p− 3], 0, ..., 0, 0);

(s′′f−1, s
′′
f−2, ..., s

′′
1 , s

′′
0) = (p− 1− s′f−1, p− 1, ..., p− 1, p− 1);

(sf−1, sf−2, ..., s1, s0) = (p− 3− s′f−1, p− 1, ..., p− 1, p− 1).

(d) f > 2 and (s′f−1, s
′
f−2, ..., s

′
f−1−i, s

′
f−2−i, s

′
f−3−i, ..., s

′
0) =

(∈ [0, p− 3], 0, ..., 0, 0, 0, ..., 0);

(s′′f−1, s
′′
f−2, ..., s

′′
f−1−i, s

′′
f−2−i, s

′′
f−3−i, ..., s

′′
0) =

(p− 2− s′f−1, p− 1, ..., p− 1, 1, 0, ..., 0) where i ∈ [1, f − 2];

(sf−1, sf−2, ..., sf−1−i, sf−2−i, sf−3−i, ..., s0) =
(p− 3− s′f−1, p− 1, ..., p− 1, p− 1, p− 1, ..., p− 1).

(e) f > 2 and (s′f−1, s
′
f−2, ..., s

′
f−i, s

′
f−1−i, s

′
f−2−i, s

′
f−3−i, ..., s

′
0) =

(p− 2, 0, ..., 0, 0, 0, 0, ..., 0);

(s′′f−1, s
′′
f−2, ..., s

′′
f−i, s

′′
f−1−i, s

′′
f−2−i, s

′′
f−3−i, ..., s

′′
0) =

(0, p− 1, ..., p− 1, p− 1, 1, 0, ..., 0) where i ∈ [2, f − 1];

(sf−1, sf−2, sf−3, ..., s0) =
(p− 1, p− 2, p− 1, ..., p− 1).

(f) f = 2 and (s′f−1, s
′
f−2) = (p− 2, 0);

(s′′f−1, s
′′
f−2) = (1, p− 1) where i = 1;

(sf−1, sf−2) = (p− 1, p− 2).

(g) f > 2 and (s′f−1, s
′
f−2, s

′
f−3, s

′
f−4, ..., s

′
0) =

(p− 2, 0, 0, 0, ..., 0);

(s′′f−1, s
′′
f−2, s

′′
f−3, ..., s

′′
0) = (0, p− 1, 1, 0, ..., 0) where i = 1;

(sf−1, sf−2, sf−3, sf−4..., s0) =
(p− 1, p− 2, p− 1, p− 1, ..., p− 1).
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(h) f > 2 and (s′f−1, s
′
f−2, s

′
f−3, ..., s

′
f−1−i, s

′
f−2−i)

= (p− 1, 1, 0, ..., 0,∈ [1, p− 2]) where i > 1;

(s′′f−1, s
′′
f−2, s

′′
f−3, ..., s

′′
f−1−i, s

′′
f−2−i) =

(p− 1, p− 1, p− 1, ..., p− 1, s′f−2−i + 1);

(sf−1, sf−2, sf−3, ..., sf−1−i, sf−2−i) =
(p− 1, p− 1, p− 1, ..., p− 1, s′f−2−i − 1).

(i) f > 2, i = f − 1 and (s′f−1, s
′
f−2, s

′
f−3, ..., s

′
1, s

′
0) =

(p− 1, 1, 0, ..., 0, p− 1);

(s′′f−1, s
′′
f−2, s

′′
f−3, ..., s

′′
1 , s

′′
0) = (1, 0, 0, ..., 0, p− 1);

(sf−1, sf−2, sf−3, ..., s1, s0) = (p− 1, p− 1, p− 1, ..., p− 1, p− 2).

Proof. The conditions on s⃗′, s⃗′′ and s⃗ are a consequence of the preceding discussion
along with explicit descriptions coming from the list in Proposition 5.4. The con-

dition on t⃗′, t⃗′′ and t⃗ follow from comparing descriptions of χ2 using Lemmas 4.18
and 4.21. □

Remark 6.5. In each triple of s⃗′, s⃗′′ and s⃗ featuring in the list in Proposition 6.4,
at least two of the vectors have some component equal to p− 1.

6.6. Type II intersections when f > 1, e > 1. We will compute the scenarios
in which type II intersections occur for the pair Vt⃗′,s⃗′ and Vt⃗′′,s⃗′′ . In the case of

Vt⃗′,s⃗′ , we will assume without loss of generality that i = f − 1 in the statements of

Lemma 4.21 and that t⃗′ = 0.
In the following calculations, we will use some extra notation and strategies for

comparing JAH
V
t⃗′,s⃗′

(χ1, χ2) and J
AH
V
t⃗′′,s⃗′′

(χ1, χ2) that we now explain. Given the Serre

weights Vt⃗′,s⃗′ and Vt⃗′′,s⃗′′ , and suitable GK characters χ1 and χ2, we may compute

y′j , y
′′
j , z

′
j , z

′′
j , λ

′
j , λ

′′
j , I ′

j , I ′′
j , ξ

′
j and ξ′′j using Definitions 4.3, 4.5 and 4.9.

Definition 6.7. Fix j ∈ T . V ′
j ⊂ Z is defined to satisfy:

{ξ′j − u(pf − 1)|u ∈ I ′
j} = {(pf − 1)v + λ′j |v ∈ V ′

j }

V ′′
j ⊂ Z is defined to satisfy:

{ξ′′j − u(pf − 1)|u ∈ I ′′
j } = {(pf − 1)v + λ′j |v ∈ V ′′

j }

The above definition of V ′′
j makes sense because λ′′j ≡ λ′j mod pf−1, since ex-

ponentiating ωj with either gives the same character χ−1
2 χ1.

Definition 6.8. Define P ′, P ′′ ⊂ T × Z as follows:

P ′ := {(j, v) ∈ T × Z|v ∈ V ′
j }

P ′′ := {(j, v) ∈ T × Z|v ∈ V ′′
j }

We define two functions β and α next.
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Definition 6.9.

β : T × Z → Z

(j, v) 7→ (pf − 1)v + λ′j

and,

α : T × Z → Z× {0, 1, ..., f ′′ − 1}
(j, v) 7→ (m,κ)

where m =
β(j, v)

pvalp(β(j,v))
, and κ satisfies (4.10.2).

Remark 6.10. By Definitions 4.10 and 6.9, JAH
V
t⃗′,s⃗′

(χ1, χ2) = {α(j, v)|(j, v) ∈ P ′}
and JAH

V
t⃗′′,s⃗′′

(χ1, χ2) = {α(j, v)|(j, v) ∈ P ′′}.

Remark 6.11. By the comments following Definition 4.10, α|P ′ and α|P ′′ are injec-
tive functions.

Remark 6.12. An examination of Definition 4.10 shows that if v ∈ V ′
j for some

j ∈ T , then finding a pair (j̃, ṽ) ∈ P ′′ such that α(j, v) = α(j̃, ṽ) is equivalent to
finding j̃ and ṽ ∈ V ′′

j̃
satisfying the following two conditions:

• (pf − 1)v − λ′j and (pf − 1)ṽ − λ′j differ by a factor of a p-power;

• the difference of p-adic valuations offsets the difference between j and j̃ in
the formula for computing κ in (4.10.2).

Remark 6.13. Let α(j, v) = α(j̃, ṽ). Then j = j̃ ⇐⇒ valp((p
f − 1)v − λ′j) ≡

valp((p
f − 1)ṽ − λ′

j̃
) mod f .

Remark 6.14. If j ̸= j̃ and valp((p
f − 1)v − λ′j) = valp((p

f − 1)ṽ − λ′
j̃
) = 0, then

α(j, v) ̸= α(j̃, ṽ).

Definition 6.15. We will say that a pair (j, v) ∈ P ′ matches (j̃, ṽ) ∈ P ′′ if α(j, v) =
α(j̃, ṽ).

Remark 6.16. For the purposes of our calculations, we will classify the ways a pair
(j, v) ∈ P ′ can match a pair (j̃, ṽ) ∈ P ′′ in the following manner:

(i) (j, v) = (j̃, ṽ).
(ii) j̃ ≡ j+1 mod f and ṽ = pv+z′j+1−y′j+1; or j ≡ j̃+1 and v = pṽ+z′j−y′j .

In these cases, |valp((pf − 1)v − λ′j)− valp((p
f − 1)ṽ − λ′

j̃
)| = 1.

(iii) Matches not classified by either of the above.

As we will see, the first two types will be easy to spot, whereas the third will
need some verification.

We will use the notation and ideas above repeatedly in the calculations below.
Because of the repetitiveness of the arguments, we will show the calculations in
detail only for a few scenarios, and will only report the findings from the calculations
for the rest.

6.16.1. Case 1. : |JAH
V
t⃗′,s⃗′

(χ1, χ2)| = |JAH
V
t⃗′′,s⃗′′

(χ1, χ2)| = ef−1, both via Lemma 4.21(i).

Case 1a. : i = f − 1. Comparing ways of writing χ−1
2 χ1 and χ2 in terms of s⃗′, s⃗′′

and t⃗′′ using Remark 4.22, we obtain that Vt⃗′,s⃗′ = Vt⃗′′,s⃗′′ , a contradiction.
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Case 1b. : i < f − 1.

Comparing ways of writing χ−1
2 χ1 in terms of s⃗′ and s⃗′, we have:

e− 2− s′f−1 +
∑

j∈T∖{f−1}

pf−1−j(s′j + e) ≡

pf−1−i(e− 2− s′′i ) +
∑

j∈T∖{i}

pf−1−j(s′′j + e)

⇐⇒ − 2− s′f−1 +
∑

j∈T∖{f−1}

pf−1−js′j ≡ pf−1−i(−2− s′′i ) +
∑

j∈T∖{i}

pf−1−js′′j

⇐⇒ p− 2− s′f−1 + p(s′f−2 − 1) +
∑

j∈T∖{f−1,f−2}

pf−1−js′j ≡

pf−1−i(p− 2− s′′i ) + pf−i(s′′i−1 − 1)
∑

j∈T∖{i,i−1}

pf−1−js′′j Vt⃗′,s⃗′

⇐⇒ (p− 2− s′f−1, s
′
f−2 − 1, s′f−3, ..., s

′
0) ≡

(s′′f−1, ..., s
′′
i+1, p− 2− s′′i , s

′′
i−1 − 1, s′′i−2..., s

′′
0)

Lemma 6.17. The above condition is satisfied if and only if (upto interchanging

s⃗′ with s⃗′′), one of the following pairs describe s⃗′ and s⃗′′:

(i) (s′f−1, s
′
f−2, ..., s

′
k+1, s

′
k) = (∈ [0, p − 2], 0, ..., 0,∈ [1, p − 1]) for some k ∈

[i+ 1, f − 2],
(s′i, s

′
i−1, ..., s

′
l+1, s

′
l) = (∈ [0, p − 2], p − 1, ..., p − 1,∈ [0, p − 2]) for some

l ∈ [0, i− 1];
(s′′f−1, s

′′
f−2, ..., s

′′
k+1, s

′′
k) = (p− 2− s′f−1, p− 1, ..., p− 1, s′k − 1),

(s′′i , s
′′
i−1, ..., s

′′
l+1, s

′′
l ) = (p− 2− s′i, 0, ..., 0, s

′
l + 1).

(ii) (s′f−1, s
′
f−2, ..., s

′
k+1, s

′
k) = (∈ [0, p − 2], 0, ..., 0,∈ [1, p − 1]) for some k ∈

[i+ 1, f − 2],
(s′i, s

′
i−1, ..., s

′
0) = (∈ [0, p− 2], p− 1, ..., p− 1);

(s′′f−1, s
′′
f−2, ..., s

′′
k+1, s

′′
k) = (p− 1− s′f−1, p− 1, ..., p− 1, s′k − 1),

(s′′i , s
′′
i−1, ..., s

′′
0) = (p− 2− s′i, 0, ..., 0).

(iii) (s′f−1, s
′
f−2, ..., s

′
i+1, s

′
i, s

′
i−1, ..., s

′
0) = (∈ [0, p − 2], 0, ..., 0,∈ [1, p − 1], p −

1, ..., p− 1);
(s′′f−1, s

′′
f−2, ..., s

′′
i+1, s

′′
i , s

′′
i−1, ..., s

′′
0) = (p− 1− s′f−1, p− 1, ..., p− 1, p− s′i −

1, 0, ..., 0).

Proof. Easy verification upon recalling that s′f−1, s
′′
i ≤ p−2 by Lemma 4.21(i). □

Imposing the above conditions, we now calculate y′j , y
′′
j , z

′
j , z

′′
j , I ′

j , I ′′
j , V

′
j and

V ′′
j , and compare JAH

V
t⃗′,s⃗′

(χ1, χ2) with J
AH
V
t⃗′′,s⃗′′

(χ1, χ2) using Remark 6.10.

For Lemma 6.17(i), we have:

y′j =

{
s′j + 1 if j = f − 1

0 if j ∈ T ∖ {f − 1}
(6.17.1)
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y′′j =

{
p− 1− s′j if j = i

0 if j ∈ T ∖ {i}
(6.17.2)

z′j =

{
e− 1 if j = f − 1

e+ s′j if j ∈ T ∖ {f − 1}
(6.17.3)

z′′j =



p+ e− 2− s′j = p+ (z′j − y′j) if j = f − 1

p+ e− 1 = p− 1 + (z′j − y′j) if j ∈ [k + 1, f − 2]

e− 1 + s′j = −1 + (z′j − y′j) if j = k

e− 1 = −p+ (z′j − y′j) + y′′j if j = i

e = −(p− 1) + (z′j − y′j) if j ∈ [l + 1, i− 1]

e+ 1 + s′j = 1 + (z′j − y′j) if j = l

e+ s′j = (z′j − y′j) if j ∈ [i+ 1, k − 1] ∪ [0, l − 1]

(6.17.4)

I ′
j =

{
[0, e− 2] if j = f − 1

{0} ∪ [s′j + 1, s′j + e− 1] if j ∈ T ∖ {f − 1}
(6.17.5)

I ′′
j =



{0} ∪ [p− 1− s′j , z
′′
j − 1] if j = f − 1

{0} ∪ [p, z′′j − 1] if j ∈ [k + 1, f − 2]

{0} ∪ [s′j , z
′′
j − 1] if j = k

[0, e− 2] if j = i

{0} ∪ [1, z′′j − 1] if j ∈ [l + 1, i− 1]

{0} ∪ [s′′j + 2, z′′j − 1] if j = l

{0} ∪ [s′′j , z
′′
j − 1] if j ∈ [i+ 1, k − 1] ∪ [0, l − 1]

(6.17.6)

V ′
j =

{
[1, e− 1] if j = f − 1

[1, e− 1] ∪ {s′j + e} if j ∈ T ∖ {f − 1}
(6.17.7)

V ′′
j =



[1, e− 1] ∪ {p+ z′j − y′j} if j = f − 1

[2, e] ∪ {p+ z′j − y′j} if j ∈ [k + 1, f − 2]

[2, e] ∪ {s′j + e} if j = k

[1, e− 1] if j = i

[0, e− 1] if j ∈ [l + 1, i− 1]

[0, e− 2] ∪ {s′j + e} if j = l

[1, e− 1] ∪ {s′j + e} if j ∈ [i+ 1, k − 1] ∪ [0, l − 1]

(6.17.8)

Recall that JAH
V
t⃗′,s⃗′

(χ1, χ2) = {α(j, v)|(j, v) ∈ P ′} and JAH
V
t⃗′′,s⃗′′

(χ1, χ2) = {α(j, v)|(j, v) ∈
P ′′}. In order to compare the two, there is no work to be done for (j, v) ∈ P ′ ∩P ′′.
So, we must now examine the image of α when restricted to the set P ′ − P ′′ and
compare it to the image of α when restricted to the set P ′′ − P ′.

To begin, consider {(j, 1)|j ∈ [k, f − 2]} ⊂ P ′ −P ′′. One can immediately verify
using Remark 6.12 that α(j, 1) = α(j + 1, p+ z′j − y′j), where (j, 1) ∈ P ′ − P ′′ and



44 KALYANI KANSAL

(j+1, p+ z′j − y′j) ∈ P ′′ −P ′. Similarly, for j ∈ [l+1, i], α(j, z′j − y′j) = α(j− 1, 0).
Here (j, z′j − y′j) ∈ P ′ −P ′′ (since z′j − y′j = s′j + e) and (j − 1, 0) ∈ P ′′ −P ′. These
matches are of the type described in Remark 6.16(ii). After taking into account
all matches of the types described in Remark 6.16(i) and Remark 6.16(ii), the only
possibly unmatched pairs are (l, e − 1) ∈ P ′ − P ′′ and (k, e) ∈ P ′′ − P ′. Now,
valp(β(l, e − 1)) = 0 as s′l ̸= p − 1. As s′k ̸= 1, valp(β(k, e)) = 0. As l ̸= k,
α(l, e− 1) ̸= α(k, e) by Remark 6.14.

Therefore, JAH
V
t⃗′,s⃗′

(χ1, χ2) ̸= JAH
V
t⃗′′,s⃗′′

(χ1, χ2).

Calculations for Lemma 6.17(ii) are as follows:

y′j =

{
s′j + 1 if j = f − 1

0 if j ∈ T ∖ {f − 1}
(6.17.9)

y′′j =

{
p− 1− s′j if j = i

0 if j ∈ T ∖ {i}
(6.17.10)

z′j =

{
e− 1 if j = f − 1

e+ s′j if j ∈ T ∖ {f − 1}
(6.17.11)

z′′j =



p+ e− 1− s′j = p+ (z′j − y′j) + 1 if j = f − 1

p+ e− 1 = p− 1 + (z′j − y′j) if j ∈ [k + 1, f − 2]

e− 1 + s′j = −1 + (z′j − y′j) if j = k

e+ s′j = (z′j − y′j) if j ∈ [i+ 1, k − 1]

e− 1 = −p+ (z′j − y′j) + y′′j if j = i

e = −(p− 1) + (z′j − y′j) if j ∈ [0, i− 1]

(6.17.12)

I ′
j =

{
[0, e− 2] if j = f − 1

{0} ∪ [s′j + 1, s′j + e− 1] if j ∈ T ∖ {f − 1}
(6.17.13)

I ′′
j =



{0} ∪ [p− s′j , z
′′
j − 1] if j = f − 1

{0} ∪ [p, z′′j − 1] if j ∈ [k + 1, f − 2]

{0} ∪ [s′j , z
′′
j − 1] if j = k

{0} ∪ [s′′j + 1, z′′j − 1] if j ∈ [i+ 1, k − 1]

[0, e− 2] if j = i

{0} ∪ [1, z′′j − 1] if j ∈ [0, i− 1]

(6.17.14)

V ′
j =

{
[1, e− 1] if j = f − 1

[1, e− 1] ∪ {s′j + e} if j ∈ T ∖ {f − 1}
(6.17.15)
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V ′′
j =



[0, e− 2] ∪ {p+ z′j − y′j} if j = f − 1

[2, e] ∪ {p+ z′j − y′j} if j ∈ [k + 1, f − 2]

[2, e] ∪ {s′j + e} if j = k

[1, e− 1] ∪ {s′j + e} if j ∈ [i+ 1, k − 1]

[1, e− 1] if j = i

[0, e− 1] if j ∈ [0, i− 1]

(6.17.16)

To verify JAH
V
t⃗′,s⃗′

(χ1, χ2) = JAH
V
t⃗′′,s⃗′′

(χ1, χ2), we apply the same strategy as we

previously did. As before, for each (j, v) ∈ P except (f − 1, e− 1), we can get (j, v)
to match some (j̃, ṽ) with (j̃, ṽ) ∈ P ′′ via Remark 6.16(i) or Remark 6.16(ii). (k, e)
is the only pair in P ′′ not matched to anything in P −{(f −1, e−1)} via these two
matching strategies. By Remark 6.14, (f − 1, e − 1) cannot match (k, e) because
valp(β(f − 1, e− 1)) = 0 = valp(β(k, e)), since s

′
f−1 ̸= p− 1 and s′k ̸= 0. Therefore,

we do not get a type II intersection in the desired manner.
The calculations for Lemma 6.17(iii) are similar and left to the reader. The re-

sults from the calculations are also similar, and show that JAH
V
t⃗′,s⃗′

(χ1, χ2) ̸= JAH
V
t⃗′′,s⃗′′

(χ1, χ2).

The findings are summarized below.

Proposition 6.18. Let e > 1, f > 1. Suppose Vt⃗′,s⃗′ and Vt⃗′′,s⃗′′ are a pair of non-

isomorphic, non-Steinberg Serre weights. There do not exist any GK characters χ1

and χ2 such that |JAH
V
t⃗′,s⃗′

(χ1, χ2)| = ef − 1 via Lemma 4.21(i), |JAH
V
t⃗′′,s⃗′′

(χ1, χ2)| =
ef − 1 via Lemma 4.21(i) and JAH

V
t⃗′,s⃗′

(χ1, χ2) = JAH
V
t⃗′′,s⃗′′

(χ1, χ2).

6.18.1. Case 2. : |JAH
V
t⃗′,s⃗′

(χ1, χ2)| = ef − 1 via Lemma 4.21(iii); |JAH
V
t⃗′′,s⃗′′

(χ1, χ2)| =
ef − 1 via Lemma 4.21(iii).

Case 2a. : i = f − 1. Comparing ways of writing χ−1
2 χ1 and χ2 in terms of s⃗′, s⃗′′

and t⃗′ using Remark 4.22, we obtain that Vt⃗′,s⃗′ = Vt⃗′′,s⃗′′ , a contradiction.

Case 2b. : i < f − 1.

Comparing ways of writing χ−1
2 χ1 in terms of s⃗′, s⃗′′ and s⃗, we have:

e− 2 + s′f−1 +
∑

j∈T∖{f−1}

pf−1−j(s′j + e)

≡ pf−1−i(e− 2 + s′′i ) +
∑

j∈T∖{i}

pf−1−j(s′′j + e) ≡
∑
j∈T

pf−1−j(sj + e)

⇐⇒ (−2 + s′f−1, s
′
f−2, ..., s

′
0) ≡ (s′′f−1, ..., s

′′
i+1,−2 + s′′i , s

′′
i−1, ..., s

′′
0)

(6.18.1)

≡ (sf−1, sf−2, ..., s0)

Comparing ways of writing χ2, we have:

pf−1−i +
∑
j∈T

pf−1−jd′′j ≡ 1 ≡
∑
j∈T

pf−1−jtj mod pf − 1

⇐⇒
∑
j∈T

pf−1−jd′′j ≡ 1− pf−1−i,
∑
j∈T

pf−1−jtj ≡ 1 mod pf − 1(6.18.2)
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Lemma 6.19. The condition in (6.18.1) is satisfied for some s⃗′, s⃗′′ and s⃗ if and

only if one of the following pairs describe s⃗′ and s⃗′′:

(i) s′f−1 ∈ [2, p− 1], s′i ∈ [0, p− 3];

s′′f−1 = s′f−1 − 2, s′′i = s′i + 2.

(ii) (s′f−1, s
′
f−2, ..., s

′
k+1, s

′
k) = (∈ [0, 1], 0, ..., 0,∈ [1, p − 1]) for some k ∈ [i +

1, f − 2], s′i ∈ [0, p− 3];
(s′′f−1, s

′′
f−2, ..., s

′′
k+1, s

′′
k) = (p−2+ s′f−1, p−1, ..., p−1, s′k−1), s′′i = s′i+2.

(iii) (s′f−1, s
′
f−2, ..., s

′
i+1, s

′
i) = (1, 0, ..., 0,∈ [1, p− 2]);

(s′′f−1, s
′′
f−2, ..., s

′′
i+1, s

′′
i ) = (p− 1, p− 1, ..., p− 1, s′i + 1).

(iv) s′f−1 ∈ [2, p − 1], (s′i, s
′
i−1..., s

′
l+1, s

′
l) = (p − 1, p − 1, ..., p − 1,∈ [0, p − 2])

for some l ∈ [0, i− 1];
s′′f−1 = s′f−1 − 2, (s′′i , s

′′
i−1..., s

′′
l+1, s

′′
l ) = (1, 0, ..., 0, s′l + 1).

(v) s′f−1 ∈ [1, p− 1], (s′i, s
′
i−1..., s

′
0) = (p− 1, p− 1, ..., p− 1);

s′′f−1 = s′f−1 − 1, (s′′i , s
′′
i−1..., s

′′
0) = (1, 0, ..., 0);

sf−1 ∈ [1, p− 1], (si, si−1..., s0) = (p− 1, p− 1, ..., p− 1).

(vi) (s′f−1, s
′
f−2, ..., s

′
k+1, s

′
k) = (1, 0, ..., 0,∈ [1, p−1]) for some k ∈ [i+1, f −2],

(s′i, s
′
i−1, ..., s

′
l+1, s

′
l) = (p−1, p−1, ..., p−1,∈ [0, p−2]) for some l ∈ [0, i−1];

(s′′f−1, s
′′
f−2, ..., s

′′
k+1, s

′′
k) = (p− 2 + s′f−1, p− 1, ..., p− 1, s′k − 1),

(s′′i , s
′′
i−1, ..., s

′′
l+1, s

′′
l ) = (1, 0, ..., 0, s′l + 1).

Proof. Easy verification upon recalling that s′f−1, s
′′
i ≥ 1 byLemma 4.21(iii). □

Imposing the above conditions, we now calculate y′j , y
′′
j , z

′
j , z

′′
j , I ′

j , I ′′
j , V

′
j and

V ′′
j , and compare JAH

V
t⃗′,s⃗′

(χ1, χ2) with J
AH
V
t⃗′′,s⃗′′

(χ1, χ2) using Remark 6.10.

For Lemma 6.19(i), we have:

y′j =

{
1 if j = f − 1

0 if j ∈ T ∖ {f − 1}
(6.19.1)

y′′j =

{
1 if j = i

0 if j ∈ T ∖ {i}
(6.19.2)

z′j =

{
e− 1 + s′j if j = f − 1

e+ s′j if j ∈ T ∖ {f − 1}
(6.19.3)

z′′j =


e− 2 + s′j = z′j − y′j if j = f − 1

e+ 1 + s′i = (z′j − y′j) + y′′j if j = i

e+ s′j = z′j − y′j if j ∈ T ∖ {f − 1, i}
(6.19.4)

I ′
j =

{
{1} ∪ [s′j + 1, z′j − 1] if j = f − 1

{0} ∪ [s′j + 1, z′j − 1] if j ∈ T ∖ {f − 1}
(6.19.5)
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I ′′
j =


{0} ∪ [s′j − 1, z′′j − 1] if j = f − 1

{1} ∪ [s′i + 3, z′′j − 1] if j = i

{0} ∪ [s′j + 1, z′j − 1] if j ∈ T ∖ {f − 1, i}
(6.19.6)

V ′
j =

{
[1, e− 2] ∪ {z′j − y′j} if j = f − 1

[1, e− 1] ∪ {z′j − y′j} if j ∈ T ∖ {f − 1}
(6.19.7)

V ′′
j =


[1, e− 1] ∪ {z′j − y′j} if j = f − 1

[1, e− 2] ∪ {z′j − y′j} if j = i

[1, e− 1] ∪ {z′j − y′j} if j ∈ T ∖ {f − 1, i}
(6.19.8)

The only pairs in P and P ′′ that are unmatched after applying matching strategy
Remark 6.16(i) are (i, e−1) ∈ P and (f−1, e−1) ∈ P ′′. As s′i ̸= p−1 and s′f−1 ̸= 1,

valp(β(i, e−1)) = 0 = valp(β(f−1, e−1)). By Remark 6.14, (i, e−1) cannot possibly
match (f − 1, e− 1), and therefore, JAH

V
t⃗′,s⃗′

(χ1, χ2) ̸= JAH
V
t⃗′′,s⃗′′

(χ1, χ2).

For Lemma 6.19(ii), we have:

y′j =

{
1 if j = f − 1

0 if j ∈ T ∖ {f − 1}
(6.19.9)

y′′j =

{
1 if j = i

0 if j ∈ T ∖ {i}
(6.19.10)

z′j =

{
e− 1 + s′j if j = f − 1

e+ s′j if j ∈ T ∖ {f − 1}
(6.19.11)

z′′j =



p+ e− 2 + s′j = p+ (z′j − y′j) if j = f − 1

p+ e− 1 = (p− 1) + (z′j − y′j) if j ∈ [k + 1, f − 2]

e− 1 + s′j = −1 + (z′j − y′j) if j = k

e+ 1 + s′i = (z′j − y′j) + y′′j if j = i

e+ s′j = z′j − y′j if j ̸∈ {i} ∪ [k, f − 1]

(6.19.12)

I ′
j =

{
{1} ∪ [s′j + 1, z′j − 1] if j = f − 1

{0} ∪ [s′j + 1, z′j − 1] if j ∈ T ∖ {f − 1}
(6.19.13)

I ′′
j =



{0} ∪ [p+ s′j − 1, z′′j − 1] if j = f − 1

{0} ∪ [p, z′′j − 1] if j ∈ [k + 1, f − 2]

{0} ∪ [s′j , z
′′
j − 1] if j = k

{1} ∪ [s′i + 3, z′′j − 1] if j = i

{0} ∪ [s′j + 1, z′j − 1] if j ̸∈ {i} ∪ [k, f − 1]

(6.19.14)

V ′
j =

{
[1, e− 2] ∪ {z′j − y′j} if j = f − 1

[1, e− 1] ∪ {z′j − y′j} if j ∈ T ∖ {f − 1}
(6.19.15)
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V ′′
j =



[1, e− 1] ∪ {p+ z′j − y′j} if j = f − 1

[2, e] ∪ {p+ z′j − y′j} if j ∈ [k + 1, f − 2]

[2, e] ∪ {z′j − y′j} if j = k

[1, e− 2] ∪ {z′j − y′j} if j = i

[1, e− 1] ∪ {z′j − y′j} if j ̸∈ {i} ∪ [k, f − 1]

(6.19.16)

The only pairs in P and P ′′ that are unmatched after applying matching strate-
gies in Remark 6.16(i) and Remark 6.16(ii) are those in {(f−1, z′f−1−y′f−1), (i, e−
1)} ⊂ P and {(f−1, e−1), (k, e)} ⊂ P ′′. As valp(β(i, e−1)) = 0 = valp(β(k, e)) and
i ̸= k, JAH

V
t⃗′,s⃗′

(χ1, χ2) = JAH
V
t⃗′′,s⃗′′

(χ1, χ2) if and only if (i, e− 1) matches (f − 1, e− 1),

while (f − 1, z′f−1 − y′f−1) matches (k, e). Suppose this is true and (m,κ) =

α(f − 1, z′f−1 − y′f−1) = α(k, e). Plugging this data into the formula for κ in

(4.10.2), we get:

valp(β(f − 1, z′f−1 − y′f−1)) ≡ f − 1− k mod f(6.19.17)

Therefore, pf−1−k|β(f − 1, z′f−1 − y′f−1) = p(z′f−2 − y′f−2)+ p2(z′f−3 − y′f−3)+ ...+

pf (z′f−1 − y′f−1) and we have:

m ≤
p(z′f−2 − y′f−2) + p2(z′f−3 − y′f−3) + ...+ pf (z′f−1 − y′f−1)

pf−1−k

= (z′k − y′k) + p(z′k−1 − y′k−1) + ...+ pk+1(z′f−1 − y′f−1) +
(z′f−2 − y′f−2)

pf−2−k
+ ...+

(z′k+1 − y′k+1)

p

< (pf − 1)e+ (z′k − y′k) + p(z′k−1 − y′k−1) + ...+ pf−1(z′k+1 − y′k+1)

= α(k, e) = m

Contradiction. Therefore, JAH
V
t⃗′,s⃗′

(χ1, χ2) ̸= JAH
V
t⃗′′,s⃗′′

(χ1, χ2).

For Lemma 6.19(iii), we have:

y′j =

{
1 if j = f − 1

0 if j ∈ T ∖ {f − 1}
(6.19.18)

y′′j =

{
1 if j = i

0 if j ∈ T ∖ {i}
(6.19.19)

z′j =

{
e− 1 + s′j if j = f − 1

e+ s′j if j ∈ T ∖ {f − 1}
(6.19.20)

z′′j =


p+ e− 2 + s′j = p+ (z′j − y′j) if j = f − 1

p+ e− 1 = (p− 1) + (z′j − y′j) if j ∈ [i+ 1, f − 2]

e+ s′j = z′j − y′j if j = i

e+ s′j = z′j − y′j if j ̸∈ [i, f − 1]

(6.19.21)
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I ′
j =

{
{1} ∪ [s′j + 1, z′j − 1] if j = f − 1

{0} ∪ [s′j + 1, z′j − 1] if j ∈ T ∖ {f − 1}
(6.19.22)

I ′′
j =


{0} ∪ [p+ s′j − 1, z′′j − 1] if j = f − 1

{0} ∪ [p, z′′j − 1] if j ∈ [i+ 1, f − 2]

{1} ∪ [s′j + 2, z′′j − 1] if j = i

{0} ∪ [s′j + 1, z′j − 1] if j ̸∈ [i, f − 1]

(6.19.23)

V ′
j =

{
[1, e− 2] ∪ {z′j − y′j} if j = f − 1

[1, e− 1] ∪ {z′j − y′j} if j ∈ T ∖ {f − 1}
(6.19.24)

V ′′
j =


[1, e− 1] ∪ {p+ z′j − y′j} if j = f − 1

[2, e] ∪ {p+ z′j − y′j} if j ∈ [i+ 1, f − 2]

[2, e− 1] ∪ {z′j − y′j} if j = i

[1, e− 1] ∪ {z′j − y′j} if j ̸∈ [i, f − 1]

(6.19.25)

Every pair in P matches with some pair in P ′′ upon applying matching strategies
in Remark 6.16(i) and Remark 6.16(ii). Therefore, JAH

V
t⃗′,s⃗′

(χ1, χ2) = JAH
V
t⃗′′,s⃗′′

(χ1, χ2)!

We omit demonstrating the calculations for Lemma 6.19(iv), Lemma 6.19(v) and
Lemma 6.19(vi). They proceed similar to the calculations above, and the findings
for all pairs described in Lemma 6.19 can be summarized as follows:

Proposition 6.20. Suppose Vt⃗′,s⃗′ and Vt⃗′′,s⃗′′ are a pair of non-isomorphic, non-

Steinberg Serre weights.
Then there exist GK characters χ1 and χ2 such that |JAH

V
t⃗′,s⃗′

(χ1, χ2)| = ef −1 via

Lemma 4.21(iii), |JAH
V
t⃗′′,s⃗′′

(χ1, χ2)| = ef−1 via Lemma 4.21(iii) and JAH
V
t⃗′,s⃗′

(χ1, χ2) =

JAH
V
t⃗′′,s⃗′′

(χ1, χ2) if and only if

• After reindexing if necessary, s⃗′ and s⃗′′ satisfy either of the below for some
i < f − 1 :

– (s′f−1, s
′
f−2, ..., s

′
i+1, s

′
i) = (1, 0, ..., 0,∈ [0, p− 2]);

(s′′f−1, s
′′
f−2, ..., s

′′
i+1, s

′′
i ) = (p−1, p−1, ..., p−1, s′i+1) (Lemma 6.19(iii)).

– s′f−1 ∈ [1, p− 1], (s′i, s
′
i−1..., s

′
0) = (p− 1, p− 1, ..., p− 1);

s′′f−1 = s′f−1 − 1, (s′′i , s
′′
i−1..., s

′′
0) = (1, 0, ..., 0) (Lemma 6.19(v)).

• With i as above,
∑

j∈T d
′′
j ≡ 1 − pf−1−i +

∑
j∈T t

′
j, and

∑
j∈T tj ≡ 1 +∑

j∈T t
′
j mod pf − 1.

Remark 6.21. In both the cases listed in Proposition 6.20, (sf−1, sf−2, ..., s0) ≡
(s′f−1 − 2, s′f−2, ..., s

′
0). We leave the precise specification of the highest weight to

the reader.

6.21.1. Case 3. : |JAH
V
t⃗′,s⃗′

(χ1, χ2)| = ef − 1 via Lemma 4.21(i); |JAH
V
t⃗′′,s⃗′′

(χ1, χ2)| =
ef − 1 via Lemma 4.21(iii).
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Case 3a. : i = f − 1.

Comparing ways of writing χ−1
2 χ1 in terms of s⃗, s⃗′ and s⃗′′, we have:

e− 2− s′f−1 +
∑

j∈T∖{f−1}

pf−1−j(s′j + e)

≡ (e− 2 + s′′f−1) +
∑

j∈T∖{f−1}

pf−1−j(s′′j + e) ≡
∑
j∈T

pf−1−j(sj + e)

⇐⇒ (−2− s′f−1, s
′
f−2, ..., s

′
0) ≡ (−2 + s′′f−1, s

′′
f−2, ..., s

′′
0) ≡ (sf−1, sf−2, ..., s0).

(6.21.1)

Comparing ways of writing χ2, we have:

1 +
∑
j∈T

pf−1−jd′′j ≡ s′f−1 + 1 ≡
∑
j∈T

pf−1−jtj mod pf − 1

⇐⇒
∑
j∈T

pf−1−jd′′j ≡ s′f−1,
∑
j∈T

pf−1−jtj ≡ s′f−1 + 1 mod pf − 1(6.21.2)

Lemma 6.22. The condition in (6.21.1) is satisfied for some s⃗′, s⃗′′ and s⃗ if and

only if one of the following pairs describe s⃗′ and s⃗′′:

(i) (s′f−1, s
′
f−2, ..., s

′
k+1, s

′
k) = (∈ [1, p−2], 0, ..., 0,∈ [1, p−1]) where k ∈ [0, f−

2];
(s′′f−1, s

′′
f−2, ..., s

′′
k+1, s

′′
k) = (p− s′f−1, p− 1, ..., p− 1, s′k − 1).

(ii) (s′f−1, s
′
f−2, ..., s

′
0) = (∈ [1, p− 2], 0, ..., 0);

(s′′f−1, s
′′
f−2, ..., s

′′
0) = (p− s′f−1 − 1, p− 1, ..., p− 1).

Proof. Easy verification upon recalling that s′f−1 ≤ p − 2 by Lemma 4.21(i) and

s′′f−1 ≥ 1 by Lemma 4.21(iii). □

We omit the calculations for Lemma 6.22(i) which show that JAH
V
t⃗′,s⃗′

(χ1, χ2) ̸=
JAH
V
t⃗′′,s⃗′′

(χ1, χ2). Briefly, (f−1, e−1) ∈ P and (k, e) ∈ P ′′ are the pairs in P and P ′′

that don’t match using matching strategies Remark 6.16(i) and Remark 6.16(ii).
Both β(f − 1, e− 1) and β(k, e) turn out to have p-adic valuation 0 and therefore,
by Remark 6.14, α(f − 1, e− 1) ̸= α(k, e).

For Lemma 6.22(ii), all pairs in P end up matching with some pair in P ′′ via
Remark 6.16(i) or Remark 6.16(ii) (details omitted). Therefore, in this situation,
JAH
V
t⃗′,s⃗′

(χ1, χ2) = JAH
V
t⃗′′,s⃗′′

(χ1, χ2).

Case 3b. : i < f − 1.

Comparing ways of writing χ−1
2 χ1 in terms of s⃗′, s⃗′′ and s⃗, we have:

e− 2− s′f−1 +
∑

j∈T∖{f−1}

pf−1−j(s′j + e)

≡ pf−1−i(e− 2 + s′′i ) +
∑

j∈T∖{i}

pf−1−j(s′′j + e) ≡
∑
j∈T

pf−1−j(sj + e)

⇐⇒ (−2− s′f−1, s
′
f−2, ..., s

′
0) ≡ (s′′f−1, ..., s

′′
i+1,−2 + s′′i , s

′′
i−1, ..., s

′′
0)

(6.22.1)

≡ (sf−1, sf−2, ..., s0)



INTERSECTIONS OF COMPONENTS OF EMERTON-GEE STACK FOR GL2 51

Comparing ways of writing χ2, we have:

pf−1−i +
∑
j∈T

pf−1−jd′′j ≡ s′f−1 + 1 ≡
∑
j∈T

pf−1−jtj mod pf − 1

⇐⇒
∑
j∈T

pf−1−jd′′j ≡ s′f−1 + 1− pf−1−i,
∑
j∈T

pf−1−jtj ≡ s′f−1 + 1 mod pf − 1

(6.22.2)

Lemma 6.23. The condition in (6.22.1) is satisfied for some s⃗′, s⃗′′ and s⃗ if and

only if one of the following pairs describe s⃗′ and s⃗′′:

(i) (s′f−1, s
′
f−2, ..., s

′
k+1, s

′
k) = (∈ [0, p − 2], 0, ..., 0,∈ [1, p − 1]) for some k ∈

[i+ 1, f − 2],
s′i ∈ [0, p− 3];
(s′′f−1, s

′′
f−2, ..., s

′′
k+1, s

′′
k) = (p− 2− s′f−1, p− 1, ..., p− 1, s′k − 1),

s′′i = s′i + 2.
(ii) (s′f−1, s

′
f−2, ..., s

′
i+1, s

′
i) = (∈ [0, p− 2], 0, ..., 0,∈ [0, p− 2]);

(s′′f−1, s
′′
f−2, ..., s

′′
i+1, s

′′
i ) = (p− 2− s′f−1, p− 1, ..., p− 1, s′i + 1).

(iii) (s′f−1, s
′
f−2, ..., s

′
k+1, s

′
k) = (∈ [0, p − 2], 0, ..., 0,∈ [1, p − 1]) for some k ∈

[i+ 1, f − 2],
(s′i, s

′
i−1, ..., s

′
l+1, s

′
l) = (p−1, p−1, ..., p−1,∈ [0, p−2]) for some l ∈ [0, i−1];

(s′′f−1, s
′′
f−2, ..., s

′′
k+1, s

′′
k) = (p− 2− s′f−1, p− 1, ..., p− 1, s′k − 1),

(s′′i , s
′′
i−1, ..., s

′′
l+1, s

′′
l ) = (1, 0, ..., 0, s′l + 1).

(iv) (s′f−1, s
′
f−2, ..., s

′
k+1, s

′
k) = (∈ [0, p − 2], 0, ..., 0,∈ [1, p − 1]) for some k ∈

[i+ 1, f − 2],
(s′i, s

′
i−1, ..., s

′
0) = (p− 1, p− 1, ..., p− 1);

(s′′f−1, s
′′
f−2, ..., s

′′
k+1, s

′′
k) = (p− 1− s′f−1, p− 1, ..., p− 1, s′k − 1),

(s′′i , s
′′
i−1, ..., s

′′
0) = (1, 0, ..., 0).

Proof. Easy verification upon recalling that s′f−1 ≤ p − 2 by Lemma 4.21(i) and

s′′i ≥ 1 by Lemma 4.21(iii). □

For each of the pairs in the statement of Lemma 6.23, we omit the details of the
calculations comparing JAH

V
t⃗′,s⃗′

(χ1, χ2) and J
AH
V
t⃗′′,s⃗′′

(χ1, χ2). For pairs in Lemma 6.23

(i), (iii) and (iv), JAH
V
t⃗′,s⃗′

(χ1, χ2) ̸= JAH
V
t⃗′′,s⃗′′

(χ1, χ2). For the pair in Lemma 6.23(ii),

JAH
V
t⃗′,s⃗′

(χ1, χ2) = JAH
V
t⃗′′,s⃗′′

(χ1, χ2).

Proposition 6.24. Suppose Vt⃗′,s⃗′ and Vt⃗′′,s⃗′′ are a pair of non-isomorphic, non-

Steinberg Serre weights.
Then there exist GK characters χ1 and χ2 such that |JAH

V
t⃗′,s⃗′

(χ1, χ2)| = ef −1 via

Lemma 4.21(i), |JAH
V
t⃗′′,s⃗′′

(χ1, χ2)| = ef−1 via Lemma 4.21(iii) and JAH
V
t⃗′,s⃗′

(χ1, χ2) =

JAH
V
t⃗′′,s⃗′′

(χ1, χ2) if and only if (after reindexing if necessary) s⃗′, s⃗′′, s⃗, t⃗′ and t⃗′′ and

t⃗ satisfy either of the conditions below (we describe s⃗ only upto equivalence for the
sake of clarity.):

• (s′f−1, s
′
f−2, ..., s

′
0) = (∈ [1, p− 2], 0, ..., 0);

(s′′f−1, s
′′
f−2, ..., s

′′
0) = (p− s′f−1 − 1, p− 1, ..., p− 1);

(sf−1, sf−2, ..., s0) ≡ (p− 3− s′f−1, p− 1, ..., p− 1);∑
j∈T p

f−1−jd′′j ≡ s′f−1 +
∑

j∈T p
f−1−jt′j mod pf − 1, and
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j∈T p

f−1−jtj ≡ s′f−1+1+
∑

j∈T p
f−1−jt′j mod pf −1 (Lemma 6.22(ii)).

• There exists some i ≤ f − 2 such that:
(s′f−1, s

′
f−2, ..., s

′
i+1, s

′
i) = (∈ [0, p− 2], 0, ..., 0,∈ [0, p− 2]);

(s′′f−1, s
′′
f−2, ..., s

′′
i+1, s

′′
i ) = (p− 2− s′f−1, p− 1, ..., p− 1, s′i + 1) ;

(sf−1, sf−2, ..., si+1, si, si−1, ..., s0) ≡ (p − 2 − s′f−1, p − 1, ..., p − 1, s′i −
1, s′i−1, ..., s

′
0);∑

j∈T p
f−1−jd′′j ≡ s′f−1 + 1− pf−1−i +

∑
j∈T p

f−1−jt′j mod pf − 1, and∑
j∈T p

f−1−jtj ≡ s′f−1+1+
∑

j∈T p
f−1−jt′j mod pf −1 (Lemma 6.23(ii)).

Remark 6.25. For p > 2 and i = f − 2, the second condition in the proposition
above is identical to that required for Ext1F[GL2(k)]

(Vt⃗′,s⃗′ , Vt⃗′′,s⃗′′) to be non-zero via

Proposition 2.1(i)(b). The relationship between (t⃗′, s⃗′) and (t⃗′′, s⃗′′) is asymmetric
showing that only 1 family sees the type II intersection. For such a family wit-
nessing a type II intersection, the two associated type I intersections correspond to
Ext1F[GL2(k)]

(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0 via Proposition 2.1(i)(b) and HomGL2(k)(Vt⃗,s⃗, H
1(GK , Vt⃗′′,s⃗′′)) ̸=

0. In particular, when e > 1, f > 1,
Ext1F[GL2(k)]

(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0 guarantees the existence of both a type I intersection

and a type II intersection, while HomGL2(k)(Vt⃗,s⃗, H
1(GK , Vt⃗′′,s⃗′′)) ̸= 0 only guaran-

tees a type I intersection.

7. Conclusion

Theorem 7.1. Let p > 2 be a fixed prime. Let K be a finite extension of Qp, with
ring of integers OK and residue field k. Set e = e(K/Qp), f = f(K/Qp). Let X
be the reduced part of the Emerton-Gee stack for GL2 constructed in [EG1], defined
over a finite field F. Let Vt⃗,s⃗ and Vt⃗′,s⃗′ be a pair of non-isomorphic, non-Steinberg

Serre weights for GL2(k). Consider the irreducible component XVt⃗,s⃗
(resp. XV

t⃗′,s⃗′
)

of X with the property that ρ ∈ X (F) is a point of XVt⃗,s⃗
(resp. XV

t⃗′,s⃗′
) if and only

if Vt⃗,s⃗ (resp. Vt⃗′,s⃗′) is a Serre weight of ρ.

Then XVt⃗,s⃗
and XV

t⃗′,s⃗′
intersect in codimension 1 if and only if one of the fol-

lowing list of criteria holds. Next to each criterion we indicate in parenthesis the
type of intersection.

(i) Vt⃗,s⃗ and Vt⃗′,s⃗′ are both weakly regular and Ext1F[GL2(OK)]
(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0.

(Type I if e = 1, Type I or II or both if e > 1).
(ii) Vt⃗,s⃗ and Vt⃗′,s⃗′ are not both weakly regular, f > 1 and one of the follow-

ing is true after possibly interchanging Vt⃗,s⃗ and Vt⃗′,s⃗′ and possibly chang-

ing the indices of {sj}j, {s′j}j, {tj}j and {t′j}j by adding a fixed integer.

We also indicate when Ext1F[GL2(k)]
(Vt⃗,s⃗, Vt⃗′,s⃗′) is non-vanishing, or when

Ext1F[GL2(k)]
(Vt⃗,s⃗, Vt⃗′,s⃗′) is vanishing but Ext1F[GL2(OK)]

(Vt⃗,s⃗, Vt⃗′,s⃗′) is non-

vanishing, or when HomGL2(k)(Vt⃗,s⃗, H
1(K1, Vt⃗′,s⃗′)) is non-vanishing but it

is not known whether it contributes to Ext1F[GL2(OK)]
(Vt⃗,s⃗, Vt⃗′,s⃗′) or not. If

nothing is mentioned, it means that Ext1F[GL2(OK)]
(Vt⃗,s⃗, Vt⃗′,s⃗′) is vanishing.

(a) (sf−1, sf−2, ..., sf−i, sf−1−i) = (∈ [0, p−2], p−1, ..., p−1,∈ [0, p−2]),
where i ∈ [1, f − 1];
(s′f−1, s

′
f−2, ..., s

′
f−i, s

′
f−1−i) = (p− sf−1 − 2, 0, ..., 0, sf−1−i + 1);
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j∈T p

f−1−jt′j ≡ −1 − s′f−1 +
∑

j∈T p
f−1−jtj mod pf − 1 (Type I).

When i = 1, this implies Ext1F[GL2(k)]
(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0.

(b) (sf−1, sf−2, ..., s0) = (∈ [0, p− 3], p− 1, ..., p− 1);
(s′f−1, s

′
f−2, ..., s

′
0) = (p− 3− sf−1, 0, ..., 0);∑

j∈T p
f−1−jt′j ≡ −1− s′f−1 +

∑
j∈T p

f−1−jtj mod pf − 1 (Type I).

(c) (sf−1, sf−2, sf−3, ..., s0) = (p− 1, p− 2, p− 1, ..., p− 1);
(s′f−1, s

′
f−2, s

′
f−3, ..., s

′
0) = (p− 2, 0, 0, ..., 0);∑

j∈T p
f−1−jt′j ≡ −1 − s′f−1 +

∑
j∈T p

f−1−jtj mod pf − 1 (Type I).

When f = 2, this implies Ext1F[GL2(k)]
(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0.

When e = 1, f > 1, we additionally have:
(d) (sf−1, sf−2) = (p− 1,∈ [0, p− 3]);

(s′f−1, s
′
f−2) = (p− 1, sf−2 + 2);∑

j∈T p
f−1−jt′j ≡ −p+

∑
j∈T p

f−1−jtj mod pf − 1 (Type I).

This implies Ext1F[GL2(k)]
(Vt⃗,s⃗, Vt⃗′,s⃗′) = 0, HomGL2(k)(Vt⃗,s⃗, H

1(K1, Vt⃗′,s⃗′)) ̸=
0.

(e) f > 2,
(sf−1, sf−2, sf−3, ..., sf−i, sf−1−i) = (p − 1, p − 1, p − 1, ..., p − 1,∈
[0, p− 2]), where i ∈ [2, f − 1];
(s′f−1, s

′
f−2, s

′
f−3..., s

′
f−i, s

′
f−1−i) = (p− 1, 1, 0, ..., 0, sf−1−i + 1);∑

j∈T p
f−1−jt′j ≡ −1− s′f−1 +

∑
j∈T p

f−1−jtj mod pf − 1 (Type I).

(f) f = 2,
(sf−1, sf−2) = (p− 2, p− 1);
(s′f−1, s

′
f−2) = (p− 1, 1);∑

j∈T p
f−1−jt′j ≡ −1− s′f−1 +

∑
j∈T p

f−1−jtj mod pf − 1 (Type I).

(g) f > 2,
(sf−1, sf−2, sf−3, ..., s0) = (p− 2, p− 1, p− 1, ..., p− 1);
(s′f−1, s

′
f−2, s

′
f−3, ..., s

′
0) = (p− 1, 1, 0, ..., 0);∑

j∈T p
f−1−jt′j ≡ −1− s′f−1 +

∑
j∈T p

f−1−jtj mod pf − 1 (Type I).

(h) (sf−1, sf−2, ..., sf−1−i, sf−2−i) = (∈ [0, p − 2], 0, ..., 0,∈ [1, p − 2]) for
some i ∈ [1, f − 2];
(s′f−1, s

′
f−2, ..., s

′
f−1−i, s

′
f−2−i) = (p−sf−1−2, p−1, ..., p−1, sf−2−i+

1);

sf−1 + 1 +
∑f−1

j=0 tj ≡ pi+1 +
∑f−1

j=0 t
′
j mod pf − 1 (Type II).

(i) f > 2,
(sf−1, sf−2, ..., sf−1−i, sf−2−i, sf−3−i, ..., sf−m, sf−1−m)
= (∈ [0, p− 2], 0, ..., 0, 0, 0, ..., 0,∈ [1, p− 1]) for some m ∈ [3, f − 1];
(s′f−1, s

′
f−2, ..., s

′
f−1−i, s

′
f−2−i, s

′
f−3−i, ..., s

′
f−m, s

′
f−1−m)

= (p− sf−1 − 2, p− 1, ..., p− 1, 1, 0, ..., 0, sf−1−m) where i ∈ [1,m− 2];

sf−1+1+
∑f−1

j=0 tj ≡ pi(s′f−1−i+1)+
∑f−1

j=0 t
′
j mod pf − 1 (Type II).

(j) (sf−1, sf−2, ..., s1, s0) = (∈ [0, p− 3], 0, ..., 0, 0);
(s′f−1, s

′
f−2, ..., s

′
1, s

′
0) = (p− 1− sf−1, p− 1, ..., p− 1, p− 1);

sf−1 + 1 +
∑f−1

j=0 tj ≡ pf−1(s′0 + 1) +
∑f−1

j=0 t
′
j mod pf − 1 (Type II).

(k) f > 2,
(sf−1, sf−2, ..., sf−1−i, sf−2−i, sf−3−i, ..., s0) =
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(∈ [0, p− 3], 0, ..., 0, 0, 0, ..., 0);
(s′f−1, s

′
f−2, ..., s

′
f−1−i, s

′
f−2−i, s

′
f−3−i, ..., s

′
0) =

(p− 2− sf−1, p− 1, ..., p− 1, 1, 0, ..., 0) where i ∈ [1, f − 2];

sf−1+1+
∑f−1

j=0 tj ≡ pi(s′f−1−i+1)+
∑f−1

j=0 t
′
j mod pf − 1 (Type II).

(l) (sf−1, sf−2, ..., sf−i, sf−1−i, sf−2−i, sf−3−i, ..., s0) =
(p− 2, 0, ..., 0, 0, 0, 0, ..., 0);
(s′f−1, s

′
f−2, ..., s

′
f−i, s

′
f−1−i, s

′
f−2−i, s

′
f−3−i, ..., s

′
0) =

(0, p− 1, ..., p− 1, p− 1, 1, 0, ..., 0) where i ∈ [2, f − 1];

sf−1+1+
∑f−1

j=0 tj ≡ pi(s′f−1−i+1)+
∑f−1

j=0 t
′
j mod pf − 1 (Type II).

(m) f = 2,
(sf−1, sf−2) = (p− 2, 0);
(s′f−1, s

′
f−2) = (1, p− 1)

sf−1 + 1 +
∑f−1

j=0 tj ≡ p2 +
∑f−1

j=0 t
′
j mod pf − 1 (Type II).

(n) f > 2,
(sf−1, sf−2, sf−3, sf−4..., s0) =
(p− 2, 0, 0, ..., 0);
(s′f−1, s

′
f−2, s

′
f−3, ..., s

′
0) = (0, p− 1, 1, 0, ..., 0);

sf−1 + 1 +
∑f−1

j=0 tj ≡ p(s′f−2 + 1) +
∑f−1

j=0 t
′
j mod pf − 1 (Type II).

(o) f > 2,
(sf−1, sf−2, sf−3, ..., sf−1−i, sf−2−i) = (p − 1, 1, 0, ..., 0,∈ [1, p − 2])
where i > 1;
(s′f−1, s

′
f−2, s

′
f−3, ..., s

′
f−1−i, s

′
f−2−i) = (p−1, p−1, p−1, ..., p−1, sf−2−i+

1);

sf−1+1+
∑f−1

j=0 tj ≡ pi(s′f−1−i+1)+
∑f−1

j=0 t
′
j mod pf − 1 (Type II).

(p) f > 2
(sf−1, sf−2, sf−3, ..., s1, s0) = (p− 1, 1, 0, ..., 0, p− 1);
(s′f−1, s

′
f−2, s

′
f−3, ..., s

′
1, s

′
0) = (1, 0, 0, ..., 0, p− 1);

sf−1 + 1 +
∑f−1

j=0 tj ≡ pf−1(s′0 + 1) +
∑f−1

j=0 t
′
j mod pf − 1 (Type II).

When e > 1, we additionally have:
(q) sf−1 ≤ p− 3;

s′f−1 = sf−1 + 2;∑
j∈T p

f−1−jt′j ≡ −1 +
∑

j∈T p
f−1−jtj mod pf − 1 (Type I).

This implies Ext1F[GL2(k)]
(Vt⃗,s⃗, Vt⃗′,s⃗′) = 0, but Ext1F[GL2(OK)]

(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸=
0.

(r) (sf−1, sf−2, ..., sf−i, sf−1−i) = (p−1, p−1, ..., p−1,∈ [0, p−2]), where
i ≥ 1;
(s′f−1, s

′
f−2, ..., s

′
f−i, s

′
f−1−i) = (1, 0, ..., 0, sf−i−1 + 1);∑

j∈T p
f−1−jt′j ≡ −1 +

∑
j∈T p

f−1−jtj mod pf − 1 (Type I).

(s) (sf−1, sf−2, ..., s0) = (p− 2, p− 1, ..., p− 1);
(s′f−1, s

′
f−2, ..., s

′
0) = (1, 0, ..., 0);∑

j∈T p
f−1−jt′j ≡ −1 +

∑
j∈T p

f−1−jtj mod pf − 1 (Type I).

(t) (sf−1, sf−2, ..., si+1, si) = (1, 0, ..., 0,∈ [0, p− 2]), where i < f − 1;
(s′f−1, s

′
f−2, ..., s

′
i+1, s

′
i) = (p− 1, p− 1, ..., p− 1, si + 1);∑

j∈T t
′
j ≡ 1− pf−1−i +

∑
j∈T tj mod pf − 1 (Type II).
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(u) sf−1 ∈ [1, p−1], (si, si−1..., s0) = (p−1, p−1, ..., p−1), where i < f−1;
s′f−1 = sf−1 − 1, (s′i, s

′
i−1..., s

′
0) = (1, 0, ..., 0);∑

j∈T t
′
j ≡ 1− pf−1−i +

∑
j∈T tj mod pf − 1 (Type II).

(v) (sf−1, sf−2, ..., s0) = (∈ [1, p− 2], 0, ..., 0);
(s′f−1, s

′
f−2, ..., s

′
0) = (p− sf−1 − 1, p− 1, ..., p− 1);∑

j∈T p
f−1−jt′j ≡ sf−1 +

∑
j∈T p

f−1−jtj mod pf−1 (Type II).

(w) (sf−1, sf−2, ..., si+1, si) = (∈ [0, p − 2], 0, ..., 0,∈ [0, p − 2]) for some
i ≤ f − 2;
(s′f−1, s

′
f−2, ..., s

′
i+1, s

′
i) = (p− 2− sf−1, p− 1, ..., p− 1, si + 1);∑

j∈T p
f−1−jt′j ≡ sf−1+1−pf−1−i+

∑
j∈T p

f−1−jtj mod pf−1 (Type

II). When i = f−2, this agrees with Item (a), corresponds to both Type
I and II intersections, and implies Ext1F[GL2(k)]

(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0.

Proof. By Section 4.13, we need to find the criteria for when there exist two GK

characters χ1 and χ2 such that LVt⃗,s⃗
(χ1, χ2) ∩ LV

t⃗′,s⃗′
(χ1, χ2) ⊂ Ext1GK

(χ2, χ1) has

dimension ef − 1 and the same is true for most unramified twists of χ1 and χ2.
The criteria are covered in Propositions 5.2, 5.6, 6.2, 6.4, 6.18, 6.20 and 6.24. In

each of these, we have constraints on s⃗ and s⃗′ that do not depend on t⃗ and t⃗′. We

similarly have constraints on
∑f−1

j=0 p
f−1−jt′j −

∑f−1
j=0 p

f−1−jtj mod pf − 1 that

also do not depend on t⃗ and t⃗′. Collectively, the two sets of constraints define the
criteria completely.

In other words, if and only if Vt⃗,s⃗ and Vt⃗′,s⃗′ satisfy the criteria in one of Propo-

sitions 5.2, 5.6, 6.2, 6.4, 6.18, 6.20 and 6.24.
The above criteria are necessary and sufficient when K ̸= Qp. When K = Qp,

XVt⃗,s⃗
∩ XV

t⃗′,s⃗′
is codimension 1 if and only if either the above criteria hold or

the intersection contains an irreducible representation (by ??). The criterion for
existence of irreducible representations in XVt⃗,s⃗

∩ XV
t⃗′,s⃗′

is given in Lemma 4.14.

Putting all the criteria together gives the list in the statement of the Theorem,
along with Proposition 2.14 and Corollary 2.10 on computations of extensions of
Serre weights as GL2(OK)-modules.

Remark 7.2. In fact, our criteria show that when σ and τ are non-isomorphic,
non-Steinberg Serre weights, then

Ext1F[GL2(OK)]
(σ, τ) ̸= 0 =⇒ dim Xσ ∩ Xτ = [K : Qp]− 1.

This follows from the stronger statement in the proof of Proposition 2.14 when
K/Qp is unramified and Corollary 2.10 when K/Qp is ramified.

□

Theorem 7.3. In the setup of Theorem 7.1, assume that Vt⃗,s⃗ and Vt⃗′,s⃗′ are both

weakly regular and that XVt⃗,s⃗
and XV

t⃗′,s⃗′
intersect in codimension 1. Let n be the

number of [K : Qp] − 1 dimensional irreducible components in the intersection.
Then the following are true:

(i) If e = 1, then n = 1.
None of these components of dimension [K : Qp] − 1 are contained in

triple intersections of irreducible components of X .
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(ii) If e > 1 and f = 1, then

n =

{
2 if Ext1F[GL2(k)]

(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0

1 if Ext1F[GL2(k)]
(Vt⃗,s⃗, Vt⃗′,s⃗′) = 0

If s, s′ < p − 3, then each component of dimension [K : Qp] − 1 is con-
tained in a triple intersection.

(iii) If e > 1 and f > 1, then

n =

{
2 if Ext1F[GL2(k)]

(Vt⃗,s⃗, Vt⃗′,s⃗′) ̸= 0

1 if Ext1F[GL2(k)]
(Vt⃗,s⃗, Vt⃗′,s⃗′) = 0

Each of these components of dimension [K : Qp] − 1 is contained in a
triple intersection.

Proof. When e = 1, the statements are a consequence of collating criteria for type
I and type II intersections in Corollary 5.7 and Proposition 6.4. When f = 1, the
relevant results are in Propositions 5.2 and 6.2. When e > 1, f > 1, they are in
Corollary 5.7 and Remark 6.25. □
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