GOAL: p-adic generalization of a modular form to eventually. (not today) understand p-adic congruences of q-expansion coefficients of modular forms.

IDEA:
Let $n \geqslant 3, k \geqslant 2$ or $k=1 \& n \in[3,11] \quad, \quad$ a ring with n invertible
Let \bar{M}_{n} be the compactified modular curve for level n, defined over $\mathbb{Z}\left[\frac{1}{n}\right]$

Therefore, modular forms over \mathbb{C} \& those over $\mathbb{Z} / p^{r} \mathbb{Z}$ are obtained by base changing the same space. We don't get anything "extra" p-adically.
So instead of looking at all of $\bar{M}_{n} \otimes \bar{Z}_{p}$, we want to restrict to certain "rigid-analytic" open subsets of $\bar{M}_{n} \otimes \mathbb{Z}_{p}$ where certain classical modular forms become p-adically invertible.
§1. HASSE INVARIANT
Let R be an \mathbb{F}_{p}-algebra.
Let $E \xrightarrow{\pi}$ Spec R be an elliptic curve.

By Serve duality $\underline{\omega}=\pi_{*} \Omega_{E / R}^{\prime} \sim\left(R^{\prime} \pi_{*} \theta_{E}\right)^{v}$
Suppose ω is a base of $\underline{\omega}: \quad R \omega=H^{0}\left(E, \Omega_{E / R}^{\prime}\right) \sim H^{\prime}\left(E, \theta_{E}\right)^{V}$
Let $\eta \in H^{\prime}\left(E, \theta_{E}\right)$ be such that η is dual to ω under the duality map above. $\left(\Rightarrow \lambda^{-1} \eta\right.$ is the dual of $\lambda \omega$ for $\lambda \in R^{X}$)

Now, consider the absolute frobenius map inducing a p-linear endomorphism $F_{\text {abs }}^{+}$on $\theta_{E}\left(x \longmapsto x^{p}\right)$ \& therefore on $H^{\prime}\left(E, \theta_{E}\right)$.

Let $A(E, \omega)$ be defined so that $F_{a b s}^{*}(\eta)=A(E, \omega) \cdot \eta$

$$
A(E, \lambda \omega) \lambda^{-1} \eta=F_{\text {abs }}^{*}\left(\lambda^{-1} \eta\right)=\underset{\substack{P-l_{i n e a r}^{\text {map }}<}}{=} \lambda^{-P} A(E, \omega) \eta=\lambda^{1-P} A(E, \omega) \lambda^{-1} \eta
$$

So, $A(E, \omega)$ is a modular form of level one and weight $p-1$ defined over \mathbb{F}_{p}, called the Hasse invariant. It corresponds to the section $A(E, \omega) \omega^{\otimes p-1}$ of $\underline{\omega}^{\otimes p-1}$.

The Hasse invariant is holomorphic at ∞ :

Consider $T(q) \xrightarrow{\pi}$ Spec $\mathbb{E}_{p}[[q]]$
\exists a sheaf ω^{0} on $T(q)$ st. ω^{0} is invertible \& the dualizing sheaf, st. $\pi_{*} \omega^{0} \xrightarrow{\sim} R^{\prime} \pi_{ \pm} \theta_{T(q) / \mathbb{F}_{p}[[a]] \text {, where the latter is invertible as before. }}$.
(Note: for sooth curves ω_{0} is Ω^{\prime}, but here it is not)
$\omega_{\text {can }}$, the canonical differential of $T(q)$ over $\mathbb{F}_{p}((q))$, is the restriction of a base of $\pi_{*} \omega^{0}$. Thus $\omega_{c a n}$ determines $\eta_{\text {can }}$ of $H^{\prime}\left(T(q), \theta_{T(q)}\right)$ as $\mathbb{F}_{p}\left[\left[_{q}\right]\right]$ module.
$A\left(T(q), \omega_{c a n}\right)$ is the matrix of $F_{a b s}^{*}$ on $H^{\prime}\left(T(q), \theta_{T(q)}\right)$ w.r.t. the base $\eta_{c a n}$ $\Rightarrow A\left(T(q), \omega_{c a n}\right) \in \mathbb{F}_{p}[[q]]$

Its q-expansion turns out to be 1.
Idea of Pf: For $E \underset{\sim}{\stackrel{\pi}{e}} \mathrm{P} \quad \mathrm{R}$ reduced, \quad e $\Omega_{1} \cong \pi_{*} \Omega_{1}$
identity section $\quad \therefore H^{0}\left(E, \Omega^{1}\right)=$ Cotangent space at the " origin global sections

$$
\text { of } \pi_{*} \Omega_{1}
$$

$\therefore H^{\prime}\left(E, \theta_{E}\right)=$ tangent space at the origin
For a Tate curve, we take $D=t \partial t$, the invariant derivation dual to $\omega_{\text {can }}=\frac{d t}{t}$, the invariant differential. We consider the action of $F_{\text {abs }}$ on the derivation and fund that it is unchanged. $\therefore A\left(T(q), \omega_{\text {can }}\right)=1$

$$
E_{p-1} \equiv A \quad \bmod p
$$

For $p \geq 5$, E_{p-1} is the modular form $1-\frac{2(p-1)}{b_{p-1}} \sum \sigma_{p-2}(n) q^{n}$ of wt $p-1$, where $\sigma_{p-2}(n)=\sum_{d \mid n} d^{p-2}$. The q-expansion coefficients lie in $\mathbb{Q} \cap \mathbb{Z}_{p}$ as $v_{p}\left(\frac{-2(p-1)}{b_{p-1}}\right)=1$ $\therefore A \equiv E_{p-1} \bmod p$.

For $p=2,3$, not possible to list A to a modular form of level 1 , hob at ∞, oven $\mathbb{Q} \cap \mathbb{Z}_{p}$ as spaces of the correct wt are 0 -dim over \mathbb{C}.

$$
\begin{aligned}
& \text { Theorem 1.7.1. Let } n \geq 3 \text {, and suppose either that } k \geq 2 \text { or that } k=1 \\
& \text { and } n \leq 11 . ~ T h e n ~ f o r ~ a n y ~ \\
& \mathbb{Z}[1 / n] \text {-module } K \text {, the canonical map } \\
& K \otimes H^{0}\left(\bar{M}_{n},(\omega)^{\otimes k}\right) \longrightarrow H^{0}\left(\bar{M}_{n}, K \otimes(\omega)^{\otimes k}\right)
\end{aligned}
$$

is an isomorphism.

However, by base change formula,
for $p=2$ ($\quad \therefore$ wt $A=p-1=1$) and $n \in[3,11]$, $2 \nmid n$ (st. \mathbb{F}_{2} is a $\mathbb{Z}\left[\frac{1}{n}\right]$ module)
we can lift A to a modular form of level n and weight 1 over $\mathbb{Z}\left[\frac{1}{n}\right]$
for $p=3$ ($\therefore w t A=2$) and any $n \geqslant 3,3 \nmid n$, we can lift A to a modular form of lived n and weight 2

We fix such a lift and call it E_{p-1}
§2. P-ADIC MODULAR FORMS W/ GROWTH CONDITIONS
R_{0} is a p-adically complete vg. Let $r \in R_{0}$. For $n \geqslant 1$, pure to $p(n \in[3,11]$
for $p=2$, and $n \geqslant 3$ for $p=3)$. define the module $M\left(R_{0}, r, n, k\right)$ of modular forms over R_{0} of growth r, level n \& wt k :
$f \in M\left(R_{0}, r, n, k\right)$ is a rule which assigns to any triple $\left(E / S, \alpha_{n}, Y\right)$ consisting of
(a) elliptic curve E / S, where S is an R_{0}-scheme on which P is nilpotent
(b) level n structure α_{n}
(c) a section y of $\underline{\omega}^{\otimes(1-p)}$ satisfying $y \cdot E_{p-1}=r$

$$
\begin{array}{ccc}
\text { Idea: } & \text { Let } E_{p-1}=x \omega^{\otimes p-1} & \text { et } y=y \omega^{\otimes 1-p} \quad,
\end{array} \quad x \in \theta_{S}
$$

So for $r \in R_{0}^{x}$, we are demanding that E_{p-1} be invertible \Leftrightarrow reduction $\bmod P=A \neq 0 \Leftrightarrow E \bmod P$ is not supersingular for a different r, we are "removing supersingular disks of radius $|r|$ ", whatever that means

a section $f\left(E / S, \alpha_{n}, Y\right)$ of $\left(\underline{\omega}_{E / S}\right)^{\otimes k}$ over S, which depends only on the isom. class of the triple \& which commutes w/ arbitrary base change of R_{0} - schemes.

Passage to the limit allows $R(S=S p e c R)$ to not have a nilpotent p
(What we get on passage to the limit may not literally be a section of $\underline{\omega}_{E / S}$
f is holomorphic at ∞ if $\forall N \geqslant 1, f\left(T\left(q^{n}\right), \alpha_{n}, r E_{p-1}^{-1}\right)$ considered over $\mathbb{Z}((q)) \otimes\left(R_{0} / p^{N} R_{0}\right)\left[S_{n}\right]$ his in $\mathbb{Z}[[q]] \otimes\left(R_{0} / p^{N} R_{0}\right)\left[S_{n}\right] \omega_{\text {can }}^{\infty R}$, for each level structure α_{n} $S\left(R_{0}, r, n, k\right) \subset M\left(R_{0}, r, n, k\right)$ are those holomorphic at ∞.

By definitions,

$$
\begin{aligned}
& M\left(R_{0}, r, n, k\right)=\lim _{\longleftrightarrow} M\left(R_{0} / p^{N} R_{0}, r, n, k\right) \\
& S\left(R_{0}, r, n, k\right)=\lim _{\longleftrightarrow} S\left(R_{0} / p^{N} R_{0}, r, n, k\right)
\end{aligned}
$$

Warning: Holomorphic forms, NOT cusp forms
§3, §4. DETERMINATION OF MIRo, $r, n, k) \& ~ S\left(R_{0}, r, n, k\right)$ WHEN p is NILPOTENT IN Rod

Let's determine the universal triple $\left(E / S, \alpha_{n}, Y\right)$ for R_{0}, where p is milpotent \& $n \geqslant 3$ (st. $M_{n} \& \bar{M}_{n}$ exist!). Let $\mathcal{L}=\underline{\omega}^{\otimes 1-p}$ (so Y should be a section of (s)
Consider the functor:

$$
\mathcal{F}_{R_{0}, r, n}: S \longrightarrow S \text {-isom classes of triples }\left(E / S, \alpha_{n}, Y\right)
$$

This is a subfunctor of the functor:

$$
\begin{aligned}
& F_{R_{0, n}}: S \longrightarrow\left\{R_{0} \text {-mouphoins } g: S \longrightarrow M_{n} \otimes R_{0}\right. \text {, } \\
& + \text { a section } Y \text { of } g \text { g }\} \\
& g^{n} \operatorname{Sym}_{115}(\check{\alpha})
\end{aligned}
$$

11
$\left\{R_{0}-\right.$ mouphisins $s: S \longrightarrow$ Spec $_{M_{n} \otimes R_{0}}(\operatorname{Sym}(\tilde{\mathcal{L}})\}$
id

Now, $y \in g^{n} \mathcal{L}$ corresponds to the map that sends x, a section of $g^{n} \mathscr{\alpha}$, to $x_{y} y \in \theta_{S}$ $\therefore \quad E_{p-1} \xrightarrow{y} Y E_{p-1} \in \theta_{s}$. We want $Y E_{p-1}$ to be $r \Leftrightarrow E_{p-1}-r \xrightarrow{y} 0$
$\therefore F_{R_{0, r}, n}$ is represented by $V\left(E_{p-1}-r\right)$ in $\operatorname{spec}(S y m(\tilde{L}))$

Thus the universal triple $\left(E / S, \alpha_{n}, y\right)$ is the inverse image on Spec (Sym $\dot{\alpha}$) of the universal elliptic curve $w /$ level n structure over $M_{n} \otimes R_{0}$.

$$
\begin{aligned}
& =H^{0}(M_{n} \otimes R_{0}, \underline{\omega}^{\otimes R} \otimes_{M_{n} \otimes R_{0}}(\overbrace{\left(\underset{i \geqslant 0}{\oplus} \underline{\omega}^{\otimes j \dot{\delta}(\rho-1)}\right.}^{\text {sym }}) / E_{p-1}-r) \\
& =H^{0}\left(M_{n} \otimes R_{0},\left(\bigoplus_{j \geqslant 0}^{\oplus} \underline{\omega}^{\otimes k+\dot{L}(p-1)}\right) / E_{p-1}-r\right) \\
& =H^{0}\left(M_{n} \otimes R_{0},{\left.\underset{2 \geqslant 0}{ } \underline{\omega}^{\otimes k+j(p-1)}\right) /\left(E_{p-1}-r\right) ~}_{\text {}}\right.
\end{aligned}
$$

$M_{n} \otimes R_{0}$ is affine

$$
=\quad \underset{j \geqslant 0}{\oplus} M\left(R_{0}, n, k+j(p-1)\right) /\left(E_{p-1}-r\right)
$$

PROPOSITION: Let $n \geqslant 3, p \nmid n$. The submodule $S\left(R_{0}, r, n, k\right) \subset M\left(R_{0}, r, n, k\right)$ is the submodule

Pf: To talk about q-expansions, we need to adfoun ζ_{n} (st. $T\left(q^{n}\right)$ has level structure), so assume $R_{0} \geqslant J_{n}$

The $r g$ of completion of $\bar{M} \otimes R_{0}$ along ∞ is a finite number of copies of $R_{0}[[q]]$. Let me of the cusps be m_{∞}

$$
\left(\bar{M}_{n} \otimes R_{0}\right)_{m_{\infty}}^{n}=R_{0}[[q]]
$$

freely gen by $X^{\prime \prime}$ "on the local
Consider pullback of a cusp : $\quad\left(\bar{M}_{n} \otimes R_{0}\right)_{m_{\infty}} \otimes \bar{M}_{n} \otimes R_{0}$ Sym Sn $^{\Sigma}$

$$
\begin{aligned}
& \underset{\sim}{\text { Spec }} \bar{M}_{n} \otimes R_{0} \text { Sym } \dot{S} \\
&=\frac{\left(\bar{M}_{n} \otimes R_{0}\right)_{m_{\infty}}[x]}{a x-r} \quad \bar{M}_{n} \otimes R_{0}: \underbrace{E_{p-1}-r}_{=a x}
\end{aligned}
$$

upon modding successively higher powers of m_{∞}, we know that E_{P-1} becomes invertible as $a \in R_{0}[[q]]^{*}$.
\therefore already upon completing wert. m_{∞}, we get $\frac{\left(M_{n} \otimes R_{0}\right)_{m_{\infty}}^{\hat{m}}[x]}{x=r / a}$ us $R_{0}[[q]]$
\therefore pullback of one cusp is exactly one cusp with completion of the stalk being $R_{0}[[a]]$.
$f \in H^{0}\left(\underline{S p e c}_{M_{n} \otimes R_{0}}\left(S_{y m} \tilde{\mathcal{L}}\right) /\left(E_{p-1}-r\right), \underline{\infty}\right)$ has holomorphic q-expansions if at the Tate curve, it $\in R_{0}[[q]] X \cong R_{0}[[q]] X \otimes \frac{S_{y m} \tilde{\mathcal{L}}}{E_{p-1}-r} \Longleftrightarrow f \in H^{0}\left(\frac{S_{p e c}}{M_{n} \otimes R_{0} S_{y m i} / \cdots, \text {, }}\right.$ © $^{01-p}$)
§5. DETERMINATION OF $S\left(R_{0}, r, n, k\right)$ IN THE LIMIT

Now, R_{0} is any p-adically complete ring, $r \in R_{0}$ is not a zero divisor

We let $n \geqslant 3$ and:

$$
\begin{aligned}
& \text { we have a lift }\left\{\begin{array}{l}
\cdot k \geqslant 2, \text { or } \\
\cdot k=1 \text { and } n \leq 11 \text {, or } \\
E_{p-1} \text { of } \\
\text { for all these } \\
\text { cases }
\end{array} \quad k=0 \text { and } p \neq 2,\right. \text { or } \\
& \cdot k=0, p=2, n \leq 11
\end{aligned}
$$

All subsequent statements will apply to all the above cases. Proofs are sometimes different for different cases. We will only do the proofs for the general cases for the sake of clarity.

THEOREM: The homomorphism

$$
\frac{\lim H^{0}\left(\bar{M}_{n},{\underset{j}{ } \geqslant 0}_{\oplus} \omega^{k+j(p-1)}\right) \otimes_{\mathbb{Z}\left[\frac{1}{n}\right]} R_{0} / p^{N} R_{0}}{E_{p-1}-r}
$$

$$
\begin{aligned}
& \downarrow \\
&2)=\lim _{N}^{\text {definition }} S\left(R_{0} / P^{N} R_{0}, r, n, k\right)
\end{aligned}
$$

$11 \leftarrow$ shown already
is an isomorphism.

Pf: (We only do it for $k>0$)

Let \& be the quasicoherent sheaf $\bigoplus_{j \geqslant 0} \underline{\omega}^{k+j(p-1)}$ on \bar{M}_{n} \& let

$$
S_{N}=S \otimes R_{0} / p^{N} R_{0}
$$

[NOTE: As $k>0$, base change for modular forms \Rightarrow

$$
H^{0}\left(\bar{M}_{n}, s\right) \otimes R_{0} / p^{N} R_{0} \cong H^{0}\left(\bar{M}_{n}, S_{N}\right)
$$

So, we wis that $\lim H^{\circ}\left(\bar{M}_{n}, S_{N}\right) /\left(E_{p-1}-r\right) \cong$

$$
\lim _{\leftarrow} H^{0}\left(\bar{M}_{n}, S_{N} / E_{p-1}-r\right)
$$

Consider the inverse system of exact sequences:

$$
0 \longrightarrow s_{N} \xrightarrow[\uparrow_{p-1}-r]{E_{p \text { inactive }}} s_{N} \longrightarrow s_{N} /\left(E_{p-1}-r\right) \longrightarrow 0
$$

infective by
degree considerations
\& the fact that r is $n \cdot z-d$.

As $k>0, H^{\prime}\left(\bar{M}_{n}, s_{N}\right)=0$ (This is an argument in the proof of base change of modular forms in chi).
\therefore we get an SES of inverse systems:

Mittag - Leffler condition is satisfied \& we get an SES of inverse limits as desired.
§6. DETERMINATION OF A BASIS OF $S\left(R_{0}, r, n, k\right)$ in the limit.
LEMMA: For each $j \geqslant 0$
(*) $\quad H^{0}\left(\bar{M}_{n} \otimes \mathbb{Z}_{p}, \quad \underline{\omega} \otimes k+\dot{(p-1)}\right) \underset{\ldots \ldots}{E_{p-1}} H^{0}\left(\bar{M}_{n} \otimes \mathbb{Z}_{p}, \quad \underline{\omega}^{\otimes k+(\dot{p}+1)(p-1)}\right)$ admits a section

Pf: Note, first, that E_{p-1} gives an infective map because
$E_{p-1} \cdot x=0 \Rightarrow E_{p-1} x=0$ at the cusp $\Rightarrow q$-expansion of x is 0 because E_{p-1} is invertible at the cusp $\Rightarrow x=0$

Consider

$$
\begin{aligned}
& \text { sides } \\
& 0 \longrightarrow \underline{\omega}^{\otimes k+j(p-1)} \xrightarrow{E_{p-1}} \underline{\omega}^{\otimes k+(j+1)(p-1)} \longrightarrow \omega^{k+(j+1)(p-1)} / E_{p-1} \rightarrow 0
\end{aligned}
$$

$\tau_{\text {invertible sheaf }}$
As $\bar{M}_{m} \otimes \mathbb{Z}_{p}$ is proper \& flat over \mathbb{Z}_{p}.
H^{i} of the sheaf is coherent of torsion free $/ \mathbb{Z}_{p}$
\therefore We get an exact sequence of finite fie e \mathbb{Z}_{p}-modules

$$
\begin{aligned}
& 0 \longrightarrow H^{0}\left(\bar{M}_{n} \otimes \mathbb{Z}_{p}, \underline{\omega}^{\otimes k+\dot{L}(p-1)}\right) \xrightarrow{E_{p-1}} H^{0}\left(\bar{M}_{n} \otimes \mathbb{Z}_{p}, \underline{\omega}^{k+(\dot{F}+1)(p-1)}\right) \longrightarrow \\
& H^{0}\left(\bar{M}_{n} \otimes \mathbb{Z}_{p}, \underline{\omega}^{\otimes k+(\dot{f}+1)(p-1)} / E_{p-1} \underline{\omega}^{\otimes k+j(p-1)}\right) \longrightarrow H^{\prime}\left(\bar{M}_{n} \otimes \mathbb{Z}_{p}, \underline{\omega}^{k+j(p-1)}\right) \longrightarrow 0 \\
& \text { is somehow } \mathbb{Z}_{p} \text { - lat by a theorem of } \\
& \text { Igusa, \& : is finite freer seamless at torsion free } \\
& \uparrow \text { Grothendieck's } \\
& \text { conference theorem } \\
& \text { vanishes for } \\
& \text { all our cases }
\end{aligned}
$$

\therefore Cokernel of the map (*) is the kernel of a sunjective map of finite free \mathbb{Z}_{p}-modules, \therefore finite free, \therefore we get splitting of

$$
0 \rightarrow H^{0}\left(\bar{M}_{n} \otimes Z_{p}, \quad \underline{\omega}^{\otimes k+j(p-1)}\right) \xrightarrow{E_{p-1}} H^{0}\left(\bar{M}_{n} \otimes \mathbb{Z}_{p}, \underline{\omega}^{k+(j+1)(p-1)}\right) \longrightarrow \text { coker } \longrightarrow 0
$$

ㅁ.
For each $\Sigma \geqslant 0$, fix a section of (*) and let the kernel of the section be $B(n, k, j+1) \quad c$ weight $k+(j+1)(p-1)$ modular forms over \mathbb{Z}_{p}
ie. we have for $\dot{j \geqslant 0}$:

$$
H^{0}\left(\bar{M}_{n}, \underline{\omega}^{\otimes k+(j+1)(p-1)}\right) \cong E_{p-1} H^{0}\left(\bar{M}_{n}, \underline{\omega}^{k+j(p-1)}\right) \oplus B(n, k, j+1)
$$

Let $B(n, k, 0):=H^{0}\left(\bar{M}_{n}, \underline{\omega}^{\otimes k}\right)$
Let $B\left(R_{0}, n, k, j\right)=B(n, k, j) \otimes_{\mathbb{Z}_{p}} R_{0} \longleftrightarrow H^{0}\left(\bar{M}_{n}, \underline{\omega}^{k+j(p-1)}\right) \otimes_{\bar{U}_{p}} R_{0}$
Let $B^{\text {rigid }}\left(R_{0}, r, n, k\right)$ denote the R_{0} module containing all formal sums $\sum_{a=0}^{\infty} b_{a}$, $b_{a} \in B\left(R_{0}, n, R, a\right)$ whose terms tend to 0 p-adically

PROPOSITION: $\sum \sum_{a} \in B^{\text {rigid }}\left(R_{0}, r, n, k\right) \longleftrightarrow \lim _{N} H^{0}\left(\bar{M}_{n}, \oplus_{j \geqslant 0}^{\omega^{k+j}(p-1)}\right) \otimes_{\mathbb{Z}_{p}} R_{0} / p^{N} R_{0}$

The dashed anow is an isomorphism

Pf :
Injectivity :
Suppose $\quad \sum b_{a} \in B^{\text {rigid }}\left(R_{0}, r, n, k\right)$ can be written as $\left(E_{p-1}-r\right) \cdot \sum_{a \geqslant 0} s_{a} \quad w / s_{a} \in S(R, n, k+a(p-1)) \quad \& s_{a}$ tending to 0 as $a \rightarrow \infty$. $b_{a}=0$ inf $\forall N>0 \quad b_{a} \equiv 0 \quad \bmod p^{N} \quad$ (Kohl intersection theorem)
$\operatorname{Mod} p^{N}$, $\sum b_{a} \& \& s_{a}$ are finite sums. Suppose $b_{a} \equiv \delta_{a} \equiv 0 \bmod$ $p^{N} \forall a>M$. $\quad A_{b} 0 \equiv b_{M+1} \equiv E_{p-1} s_{M}-r s_{M+1} \equiv E_{p-1} s_{M}$, we get $S_{M} \equiv 0 \quad$ (Since E_{p-1} is $n z a$. .)

$$
\begin{aligned}
& b_{M} \equiv E_{P-1} s_{M-1}-r s_{M} \equiv E_{P-1} s_{M-1}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore b_{M}=0
\end{aligned}
$$

Continuing $\Sigma b_{a}=0 \quad \bmod p^{N}$

Surjectivity:
Notice that

$$
\begin{aligned}
& S\left(R_{0}, n, k+j(p-1)\right)=H^{0}\left(\bar{M}_{n}, \underline{\omega}^{\otimes k+j(p-1))} \sim \bigoplus_{j=0}^{j} B\left(R_{0}, n, k, a\right)\right. \\
& \sum_{P-1}^{j-a} b_{a} \quad \longleftarrow \quad \sum b_{a}
\end{aligned}
$$

Given $\sum s_{a}, s_{a} \in S(R, n, k+a(p-1))$ tending to 0 , we may decompose $s_{a}=\sum_{i+j=a}\left(E_{p-1}\right)^{i} b_{j}(a)$ with $\underbrace{b_{j}(a)}_{\in B\left(R_{0}, n, k, j\right)}$ tending to 0 as $a \rightarrow \infty$ uniformly in j

Then $\quad \sum_{a} s_{a}=\sum_{a} \sum_{i+j=a}\left(E_{p-1}\right)^{i} b_{j}(a)=\sum_{a} \sum_{i+j=a} r^{i} b_{j}(a)$ in $S\left(R_{0}, r, n, k\right)$

For each $j, \quad \sum_{i} r^{i} b_{j}(i+j)$ converges to $b_{j}^{\prime} \in B(R, n, k, j) \quad \& \quad b_{j}^{\prime} \rightarrow 0$ as $j \rightarrow \infty \quad\left(\right.$ as $b_{j}(a) \rightarrow 0$ uniformly in j)
$\therefore \quad \sum_{j \geqslant 0} b_{j}^{\prime}$ exists \& has same image in $S\left(R_{0}, r, n, k\right)$ as $\sum_{a \geqslant 0} s_{a}$

COROLLARY: The following is an injection:

$$
\begin{aligned}
S\left(R_{0}, r, n, k\right) & \longrightarrow S\left(R_{0}, 1, n, k\right) \\
f & \longmapsto\left(\left(E / S, \alpha_{n}, y\right) \longmapsto\left(E / S, \alpha_{n}, r y\right) \longmapsto f\right.
\end{aligned}
$$

Pf:

$$
\begin{aligned}
& \sum b_{a} \longmapsto\left(\left(E / S, \alpha_{n}, Y\right) \longmapsto \sum b_{a}\left(E / S, \alpha_{n}\right)(r y)^{a}=\sum r^{a} b_{a}\left(E / S, \alpha_{n}\right) y^{a}\right) \\
& B^{\text {rigid }}\left(R_{0}, r, n, k\right) \quad \sum_{r}^{\prime \prime} b_{a} \in B^{\text {rigid }}\left(R_{0}, 1, n, k\right) \\
& \begin{aligned}
\sum r^{a} b_{a}=0 \Rightarrow r^{a} b_{a}=0 \forall a \quad & \Rightarrow b_{a}=0 \forall a \\
& r \text { is } n z d
\end{aligned}
\end{aligned}
$$

INTERPRETATION VIA FORMAL SCHEMES:

For $R_{0} p$-adically complete and $r \in R_{0}$

Consider the formal scheme $M_{n}\left(R_{0}, r\right)$ corresponding to the functor

$$
S \quad \underset{N}{\lim _{N} S_{p e c}^{M_{n} \otimes R_{0} / P^{N} R_{0}}}{ }^{(\text {sym }} \check{\left.\mathcal{L} /\left(E_{p-1}-r\right)\right)(S)}
$$

As M_{n} is affine, this is just the space X consisting of prime ideals of sym n $\check{\delta}\left(E_{p-1}-r\right)$ that contain p with $\theta_{x}=\lim _{N}\left(\theta_{\text {sm }} / / \ldots / p^{N}\right)$
$\omega^{0 k}$ corresponds to a module F on $\theta_{s y m} \check{s} /\left(E_{R-1}-r\right) . \forall N, F / P^{N}$ gives us a $\bmod P^{N}$ module, which gives us a quassicolerent sheaf on X whose global sections are

Similar stuff can be said for \bar{M}_{n}.
§7. q-expansion for $r=1$
Proposition: let $x \in R_{0}$ be st. $x \mid p^{N}$ for some $N \geqslant 1$. TFAE for $f \in S\left(R_{0}, 1, n, k\right)$:
(1) $f \in x S\left(R_{0}, 1, n, k\right)$
(2) q expansions of f all lie in $x \cdot R_{0}\left[3_{n}\right][[q]]$
(3) On each of the $\varphi(n)$ connected components of $\bar{M}_{n} \otimes_{\mathbb{Q}\left[\frac{1}{n}\right]} \mathbb{Z}\left[\frac{1}{n}, \zeta_{n}\right]$, \exists at least one cusp where the q-expansion of f lies in $x \cdot R_{0}\left[\zeta_{n}\right][[q]]$

Pf:
(1) \Rightarrow (2) \Rightarrow (3) is clear.

We have

$$
S\left(R_{0} / \times R_{0}, 1, n, k\right) \cong B^{\text {rigid }}\left(R_{0} / \times R_{0}, 1, n, k\right) \simeq B^{\text {rigid }}\left(R_{0}, 1, n, k\right) / \times \cdot B^{\text {riga }}\left(R_{0}, 1, n, k\right)
$$

Replacing Rob by $R_{0} / x R_{0}$, we have $x=0$ \& p is mepotent.
$\therefore f \in B^{\text {rigid }}\left(R_{0}, 1, n, k\right)$ is a finite sum $\sum_{a=0}^{M} b_{a}$ \& its q-expansion at $\left(T\left(q^{n}\right), \alpha_{n}, E_{p-1}^{-1}\right)$ is that of
$\left.\sum_{a=0}^{M} b_{a} E_{p-1}^{-a}=\frac{\sum_{a=0}^{M} b_{a} E_{p-1}^{M-a}}{E_{p-1}^{M}}\right\}$ at me modular form by the way!

By hypothesis. $\sum_{a=0}^{M} b_{a}\left(E_{p-1}\right)^{M-a}$ has q-expansion 0 at one or more cups on each geometric connected component of \bar{M}_{n}. By q-expansion principle, $\sum b_{a}\left(E_{p-1}\right)^{m-a}=0$. By virtue of the isomorphioin below, $\sum b_{a}=0$.

$$
\begin{aligned}
\underset{a}{\oplus} B\left(R_{0}, n, k, a\right) & \sim S\left(R_{0}, n, k+M(p-1)\right) \quad \text { (discussed earlier) } \\
\sum b_{a} & \longmapsto \sum b_{a} E_{p-1}^{M-a}
\end{aligned}
$$

Cor: f has 0 -expansion $\Rightarrow f=0$. By (3) $\Rightarrow(1), f \in p^{N} S\left(R_{0}, 1, n, k\right) \forall N, \therefore$ is 0 .

PROPOSITION: Suppose \exists p power series $f_{\alpha}(q) \in R_{0}\left[\zeta_{n}\right][[q]]$ for each cusp α of \bar{M}_{n}. TFAE:

1) The f_{α} are q-expansions of an (necessarily unique) element $f \in S\left(R_{0}, 1, n, k\right)$
2) For every power p^{N} of $p, \exists M \geqslant 1$ st. $M \equiv 0 \bmod p^{N-1}$ and a "true" modular form $g_{N} \in S\left(R_{0}, n, k+M(p-1)\right)$ whose q-expansions are congruent mod p^{N} to the given f_{α}.

Pf:
(1) \Rightarrow (2):

If g_{N} exists $\bmod p^{N}$, then we can lift it to a modular form in R_{0}. (Obvious by base change for $k>0$ conditions, but also thee for the $k=0$ conditions specified earlier).

So, replace R_{0} by $R_{0} / p^{N} R_{0}$ \& suppose p is nilpotent.
WTS that f is the q-expansion of a true modular form of level n \& wt $k^{\prime} \geqslant k, \quad k^{\prime} \equiv k \bmod p^{N-1}(p-1)$

As seen in proof of proposition above, for p nilpotent in RD, f has the same q-expansions as $g / E_{p-1}^{M} \quad$ where $M \gg 0$ \& g is a true modular form of weight $k+M(p-1)$. Multiplying top \& bottom by suitable power of $E_{p-1}, \quad W M A \quad M \equiv 0 \bmod p^{N-1}$.
$E_{p-1}(q) \equiv 1 \bmod p$ at each cusp $\Rightarrow \quad E_{p-1}^{p^{N-1}}(q) \equiv 1 \bmod p^{N} \& \therefore E_{p-1}^{M}(q) \equiv 1$ $\bmod p^{N}$
$\Rightarrow f \bmod p^{N}$ has same q-expansion as g.
(2) \Rightarrow (1) Multiply g_{N} by powers of $E_{P-1}^{P^{N-1}}$ if needed $s-t$ wA that weights $k+M_{N}(p-1)$ of the g_{N} are increasing with N $g_{N+1}-g_{N} E_{p-1}^{M_{N+1}-M_{N}} \in p^{N} S\left(R_{0}, n, k+M_{N+1}(p-1)\right)$ by q-expansion principle.
Take $g_{0}=0$

Hence. $\sum_{N}\left(g_{N+1}-g_{N} F_{P-1}^{M_{N+1}-M_{N}}\right)$ gives an element of $S\left(R_{0}, 1, n, k\right)$
whose q-expansions are congruent to those of $g_{N} \bmod p^{N}$.
$\oint 8$
BASES FOR LEVELS $1 \& 2$
All of the above discussion needed $n \geqslant 3$, so that M_{n} was defined.
Suppose $p \neq 2,3$. Then E_{p-1} is a modular form of level 1 lifting the Hasse inv.
For $n \geqslant 3$, pure to $p, \quad R_{0} p$-adically complete, $r \in R_{0}, G l_{2}(\mathbb{Z} / n \mathbb{Z})$ acts on
the functor $\mathcal{F}_{R_{0}, r, n}$ by

$$
\begin{array}{r}
g\left(E / S, \alpha_{n}, Y\right)=\left(E / S, \quad g \circ \alpha_{n}, Y\right) \quad \text { (as } E_{p-1} \text { doesn't depend on level, } \\
\text { Eh ely remains equal to } r \text { upon } \\
\text { changing level) }
\end{array}
$$

This induces action on $M\left(R_{0}, r, n, k\right)$ and on $S\left(R_{0}, r, n, k\right)$. Notice that $M\left(R_{0}, r, 1, k\right)=M\left(R_{0}, r, n, k\right)^{G L_{2}(\pi / n z)}$
\& $\quad S\left(R_{0}, r, 1, k\right)=S\left(R_{0}, r, n, k\right)^{G_{2}(\mathbb{Z} / n \mathbb{Z})}$

Now suppose $n=3$ or $n=4$. Then $G L_{2}(\mathbb{Z} / n \mathbb{Z})$ has order prime to $p \neq 2,3$
$\left(\left|G L_{2}(\mathbb{Z} / 3 \mathbb{Z})\right|=48, \quad\left|G L_{2}(\mathbb{Z} / 4 \mathbb{Z})\right|=96\right)$
consider the map $P=\frac{1}{\# G L_{2}(\mathbb{Z} \mid n Z)} \sum q$, giving a projection onto invariants

Define $\quad B(1, k, j)=B(n, k, j)^{a L_{2}(\mathbb{Z} / n \mathbb{Z})}=P(B(n, k, j))$
$B\left(R_{0}, 1, k, j\right)=B\left(R_{0}, n, k, j\right)^{G L_{2}(\pi / n z)}$
$=B(1, k, j) \otimes_{\mathbb{T}[1 / n]} R_{0}$
\uparrow has a section, bering
a projection, so
commutes with base change

Define $\left.B^{\text {rigid }}\left(R_{0}, r, 1, k\right)=P\left(B^{\text {rigid }}\left(R_{0}, r, n, k\right)\right)=\left(B^{\text {rigid }}\left(R_{0}, r, n, k\right)\right)^{G L_{2}(Z / n Z}\right)$
consisting of $\sum b_{a}$ where each b_{a} is invariant by $G_{2}(\mathbb{Z} / n \mathbb{Z})$
Applying P to previous isomorphisms gives for r not a zero divisor

$$
\begin{aligned}
\text { Brigid }\left(R_{0}, r, 1, k\right) & \sim S\left(R_{0}, r, 1, k\right) \\
\sum b_{a} & \left.\longmapsto\left(E / S, a_{1}, y\right) \longmapsto \sum b_{a}\left(E / S, \alpha_{1}\right) y^{a}\right)
\end{aligned}
$$

Now, let $p \neq 2$ \& consider level 2. Let $E_{p-1} \in S\left(\mathbb{Z}\left[\frac{1}{2}\right], 2, p-1\right)$ be a lifting of the tasse invariant.

Let $G_{1}=$ kernel: $\quad G L_{2}(\mathbb{Z} / 4 z) \rightarrow G L_{2}(\mathbb{Z} / 2 \mathbb{Z})$
Level 4 structure induces a level 2 structure as $E[2] \leftrightarrow E[4] \xrightarrow{\alpha}(\mathbb{Z} / 4 \mathbb{Z})^{2} \cdot g \in G L_{2}(\mathbb{Z} / 4 \mathbb{Z})$ leaves the level 2 structure unchanged iff $g \in G_{1}$
$\therefore G_{1}$ invariants of level 4 modular forms give level 2 modular forms \& the projector $P_{1}=\frac{1}{\# G_{1}} \sum g_{1}$ gives us all the G_{1} invariants.

Similar considerations as above give:

$$
B^{\text {rigid }}\left(R_{0}, r, 2, k\right) \longrightarrow S\left(R_{0}, r, 2, k\right) \text { for } r \text { not a zero divisor }
$$

