
(not today)
GOAL : p-adic generalization of a modular form to eventually , understand

p-adic congruences of g-expansion coefficients of modular forms .

IDEA :

Let n ≥ 3
,
k≥ 2 or k=l & ME [3,11] ,

R a ring with n invertible

let Ñln be the compactified modular curve for level n
, defined over E.[¥]

g
Affine base change

R ④
zany

H°(Ñn ,
w_
④K ) = H°(Ñn ,

R ④ w_
④b) I H°(Ñn ✗ Speck , w_④k)

- -

Modular forms of weight k Modular forms of wt k
over ICI] over 74pr2

Therefore ,
modular forms over € & those over I/PRI are obtained

by base changing the same space . we don't get anything
"extra " p

- adically .

So instead of looking at all of Ñn④2p . we want to restrict to certain
"

rigid- analytic
"

open subsets of Ñn ④ Ip where certain classical modular

forms become p-adically invertible .

-

§1 . HASSE INVARIANT

Let R be an Ep - algebra .

Let E Speck be an elliptic curve .

By Serre duality I = Ñ* DEIR → ⇐ it* OE)
"

suppose w is a base of @ : Rw = HOLE , R'EIR) = H' (E , OE)
"

let me c- H' LE
, OE) be such that N is dual to w under the duality map above.

(⇒ a-
'

y is the dual of aw for a c- 12×1

Now
,
consider the absolute Frobenius map inducing a p - linear endomorphism Fart's on

OE Cr- XP ) & therefore on H'(E , OE) .

Let ALE , w) be defined so that Fats (n) = ACE, w) - n

1 a-'n = Farts (2-12) = 2-PACE
>WIN = a-

'

n
↑
p - linear
map

so
, ACE ,w) is a modular form of level one and weight p-1 defined over Ep ,

called the Hasseinvariant . It corresponds to the section ACE ,w)w④P-1

of 6-
④ P- 1

.



The Hasse invariant is holomorphic at • =

Consider 1- (a) ± spec Fp[[or]]

3- a sheaf w° on 1-(a) s -t- w° is invertible & the dualizing sheaf ,
s -t -

't*w° ¥ R' 1t*Ot(qy*p[[w]] ,

where the latter is invertible as before .

(Note : for smooth curves Wo is It
,
but here it is not )

wean ,
the canonical differential of Tcq) over IFPCCWD ,

is the restriction of
a base of Ñ*w° .

Thus wean determines Mean of H'(TCU) , OTLQ) ) as X-p [[a] ]
module

.

ACTED
,
wean ) is the matrix of Fats on

H' (Ttr) , 9-(g) ) w - r-t - the base mean

⇒ ACTED , wcan ) c- Fp [[or] ]

µ
"ˢ""ᵗʰ"ᵗʰ¥ᵗʰ÷ʳⁿᵈ""±"I#- : for F-→ R

J

Identity section
÷ HYE .SE) = cotangent space at the

11 origin
global sections
of it *Ri

-
'

- H'CE
, OE ) = tangent space at theorigin.

For a Tate curve
, we take D = tot

,
the invariant derivation dual to

man. , www.m.a.gaaaa.w.am.am µ .am , ⇒ www..am
/

and find that it is unchanged .
: A (Tcu) , wean ) =L

-

Ep-1 = A mod p

g
Eisenstein

For P ≥ 5
, Ep_ , is the modular form fl-ZY.gl?-80p-z(n7#fofwtp-l ,

where 0p-z(n) = I dP
-2

.

The q - expansion coeffi#Qpitpf}=1dln
d≥1

i. A = Ep_ , Mod p .

For 17=2,3
,

not possible to list A to a modular form of level 1 , holata,
over QIN Ep as spaces of the correct wt are 0 - dim over 1C

.



However , by base change
foimula

,

for p= 2 (: wt A = p - I = 1) and n c- [3,11]
,
24N (s - t - Ez is a Ifn] module)

we can lift A to a modular form of lived and weight 1 over ZEN]

for p= 3 (: wt A = 2) and any n ≥ 3
, 34N , we can lift It to a modular form

of level n and weight 2
-

We fix such a lift and call it Ep-1

§ 2 . P-ADIC MODULAR FORMS W/ GROWTH CONDITIONS

Ro is a p - adically complete rg . Let re Ro
.

For n ≥ 1 , prime top (n c- [3,11]

for p=2 ,
and n ≥ 3 for p = 3) , define the module )/ of modular

forms over Ro of growth r , level n & wt k :

5- c- M(Ro , r, n, K) is a rule which assigns to any triple (EIS , an ,Y) consisting of

(a) elliptic curve Els
,
where s is an Ro - scheme on which pisnilpotent

(b) level n structure an

(c) a section Y of Q④U-P) satisfying Y - Ep-1 = r

Idea : Let Ep- , = a w⊕P-1
,

RE 0s
Let Y = y w

④ 1- p
.

FY : YEP_, = ay =r
⇔ Hr

necessarily unique if risnzd or

"

I ≥ / Ep- it ≥ Irl
"

So for re 128
, we are demanding that Ep- i be invertible ⇔

reduction mod p = A ≠ 0 ⇔ E mod p is not supersingular
for a different r ,

we are

"

removing supersingular disks of radius Irl
"

,

whatever that means

÷Éic curves

Hasse invariants ⇔ Ep- , is not a unit1 mod p ÷ :÷⇔÷
mod p ,

but is not too small

¥
Ep, ,

is invertible

a section f-LEIS , an, Y ) of @Els )④k over S ,
which depends only on the isom - class

of the triple & which commutes w/ arbitrary base change of Ro - schemes .

Passage to the limit allows R ( s = Speck) to not have a nilpotent p

(what we get on passage to
the limit may not literally be a section of keys



f is holomorphic at • if N ≥ 1
, f(Thai .tn , rEpI ) considered over

7- (Con) ④ t.RO/pNRo)l5n] lies in I[[or]] ④ Co/pNRDC.sn] wink
, for each level structure an

S(Ro , r, n , K) C M(Ro , rink) are those holomorphic at • .

By definitions , MCRO , r, n , b) = him M(Ro/pNRo ,
r
,
n
,
R)

S(Ro , r, n , K) = Em SCRO / P" Ro , r , n , b)
↑

Warning : Holomorphic forms , Not cusp forms

§3 , §4 . DETERMINATION OF MCRO , r, n , K ) & SCRO
,
r
,
n
, b) WHEN p IS

NILPOTENT IN Ro

Let's determine the universal triple (EIS , an , Y ) for Ro
,
where p is

nilpotent & n ≥ 3 (s-t
' Mn & Ñn exist ! ) .

Let £ = w_
④1- P (so 4 should be a section

of d)

Consider the functor :

Fpu
, r, n

: S - S- isom classes of triples (EIS , an ,Y )

11 picks out F-IS
,
in

{Ro
- morphisms g : s -4 Mn ④ Ro

+ a section Y of g*£ satisfying Y . g* Ep-, = r }
This is a subfunctor of the functor :

Fran : s → { Ro - morphisms g :S → Mn④ Ro
,

+ a section Y of 99£ }

" g•sym(É)

{ Ro - morphisms g : s- Mn ④ Ro
,
+

Sym Ég*Ñ )
" I
vii.

s

}

"

{Ro - morphisms s :S → spec-m.gr
.

(sym CÑ ) }

s s

':¥É

Ésyng*I)- spec-Mn⊕R◦(SYMCÉ )id / ft
vs- Mn ④ Ro

g = toes

↑
determines F-IS

,
✗n

Now
,
Y c- g- I corresponds to the map that sends a

,
a section of g*É .to MY c- Os

-: Ep-1 YEP, c- 0s .
We want YEP - , to be r ⇔ Ep_, - r 0



÷ FRo.mn is represented by V(Ep-i - r) in spe-clsyml.SI ) )

Thus the universal triple LEIS
,
an , Y ) is the inverse image on

Spe csym ÉJ of the universal elliptic curve w/ level n structure over

Mn ⊕ Ro .

✓
reminder :p is nilpotent

[
reminder : I = w⊕p -1

M(Ro , r, n,pFn
≥ 3

= H°(sRIµn④R
.

(sym £ )/(Ep, - r) , w_
④b)

= H°(Mn ④ Ro , w_⊕k ④
mn⊕r. Ep_ ,

- r )

⊕ w_⊕k+ XP-1) )/ Ep-i - r )= H°( Mn ④ Ro . (j≥o
= H°(Mn ④ Ro

, ◦K⊕k+£"
" ) / (Ep, - r )

Mn④ Ro is affine

=
⊕ M(Ro

,
n
,
kttcp-1)) / (Epy - r )

j≥o

PROPOSITION : Let n> 3
, ppm .

The submodule SCRO , r , n , K) C M(Ro , r , n ,k) is the

submodule

H°(speˢµ-n④R, SYMÉ/(Ep-i - r ) , @
④ K ) of H°(Sp_ecmn④R

.

Sym É/ (Ep-i - r ) )

Pf : To talk about g- expansions ,
we need to adjoin 5N (s - t - Tlqn) has level structure)

,

so assume Ro ≥ In

The rg of completion of Ñn ④ Ro along • is a finite number of copies of
R◦[[or ]] .

Let one of the cusps be Mao

(Ñn ⊕ Rosina = Rolla]]

Creely gen by ×
"°m¥Éhe

wgaeg
Consider pullback of a cusp ; ☒n

④ Ro)moo ④Ñn④R◦ symÉ-
¥fÑn⊕RoSYmÑ → Ñn ⊕ Ro Ept - r

Tax
= (Ñn⊕a×R:mg

Upon modding successively higher powers of Mao ,
we know that Ep-1 becomes

invertible as a c- Rolla]]
"

.

-: already upon completing w-r-t-moo.me get LMn=R%m#o[×]
" s

Rolla]]

- : pullback of one cusp is exactly one cusp with completion of the stalk being
Rolla]] .

f- c- H°( Spec
- Mn ④%

Gym Ñ )/(Ep-i - r) , @
④K ) has holomorphic g- expansions if

⇔ fEH°(SpeˢÑn④R◦SYmÑ|. - ,
at the Tate curve

,
it c- Rolla] ] × ± Rolla] ] × ⊕ Sym I

-

@
④ 1- P )

Ep-i - r

¥qmllbnk



§ 5 ' DETERMINATION OF s(Ro , r, n , R) IN THE LIMIT

Now
, Ro is any radically complete ring ,

re Ro is notazeno
divisor

we let n ≥ 3 and :

• k≥ 2 ,
or

• R=l and n ≤ II. orwe have a lift { • R=◦ and P -1-2 ,
onEp-1 of A

for all these
cases • k=0

, p=2 ,
n ≤ 11

All subsequent statements will apply to all the above cases . Proofs are
sometimes different for different cases .

We will only do the proofs for
the general cases for the sake of clarity .

THEOREM : The homomorphism

mH°(Ñn ,
⊕ wk+£(P-1 ) ) ④ Ro/ pNR☐
I≥oÉ
t
f
definition

s(Ro , r , n , K ) = Lim S(Ro/ PNRO , r , n ,
K)

N

u
← shown already

Lim Ho ( Ñn , jqco-k-t-LP-DEp.in#RopNpoyTv

is an isomorphism .

Pf : (we only do it for k > 0 )

Let & be the quasicoherent sheaf
,

@
k+£(P- " on Ñn & let

SN = S ④ Ro/pNR◦ .

-

NOTE : As k>0
,

base change for modular forms ⇒

H°(Ñn ,

S) ⊕ Ro/ p" Ro I H°(Ñn ,
Sw )

So
,
we WTS that him H°( Ñn , S.nl/(Ep-i-r) I1

y, my,µ , gn.gg,, ,



Consider the inverse system of exact sequences :

o - SN
E

IN - SN/(Ep→ - r) → 0

t
infective by
degree considerations

& the fact that r is n-zd .

As k>0
,

H'(Ñn , Sw ) = 0 (This is an argument in the proof of
base change of modular forms in Chl ) .

- : we get an SES of inverse systems :

◦ → H°(M-n.SN) H°(Ñn
, SN )- H°(Ñn .SN/Ep-i-r )- o

beauregard- f f ↓
ofbase

◦- H°(Ñn
,
In _, ) - H°(Ñn ,

Sw ) - H°(Ñn
,
Sw/ Epy- r )

→◦

Mittag - Leffler condition is satisfied & me get an SES of
inverse limits as desired -

§ 6- DETERMINATION OF A BASIS OF S(Ro , r , n , K) in the limit .

b.EMMA : For each j≥ 0

H°( Ñn ④ Ip ,
w_
④KEEP-D) EPI H◦(Ñn ④ Ip ,

④ktcsitl)CP- l) )(* ) -

E-
-

-
-
-
-

'

admits a section

Pf : Note
, first , that Ep- , gives an infective map because

F-
p-1

. a = 0 ⇒ Ep_, a = 0 at the cusp ⇒ g-expansion of a is 0 because

Ep_ , is invertible at the cusp ⇒ a = 0

Consider

0→ @
⊕ be# ICP- 1) T

@
④ b-+⑥+ 1) (P - 1)
- wk -16-+174>-1 )/ Ep, → 0

↑ invertible sheaf
As Ñn ④ Ep is proper & flat over Ip ,
Hi of the sheaf is coherent & torsion free / Zp

- : we get an exact sequence of finite free Ip - modules

0 → H°(Ñn ⊕ Ip ,
w_⊕k+KP -1) ) F Ho (Tun ⑦ Zp , @

Kt lit" LP -1 ) ) -

H°(Ñn ④ Ip ,
w_⊕k+(it'> (P

-'YEP, w_④k+£CP
- l) ) - H' (MT ④ Ip , @

k+iCP - l) ) → 0

↑
µ / ( WR-14+134-14

Ima , & -: is finite free← flatness ⇔ torsion free vanishes for
t Grothendieck 's
coherence theorem

all our cases

(argument in the proof
of base change)in Chapter 1



- : cokernel of the map (* ) is the kernel of a surjective map of
finite free Ip - modules ,

: finite free ,
-: we get splitting of

◦ → H°(Ñn ④ Ip , w_⊕k+£(P→ ) % H°(Ñn ④ 74, , @
MCI"> "→ ) → coker→ ☐

☐ .

For each j ≥ 0 , fix a section of ⇔ and let the kernel of the section be

BCN.br , g-+ 1) a weight k+(it )(P -1) modular forms over Ip

i.e. we have for j≥ 0 :

H°(Ñn , @
④k+(It ' )(P-1) ) I Ep_ , H°(Ñn , @

k+£(P-1) ) ⊕ B. (n , k, g-+ 1)

Let Blin , K, O) H°(Ñn ,
@
④ K
)

let B(Ro , n , K, j) = Bln , K, j) ④
yep
Ro ↳ H°(Ñn , ☒

k+£(P- t ) ) ④
yep
Ro

no dependence on r , actually ! ! oo

Let Brigid (Ro
, r

, n ,
K) denote the Ro module containing all formal sums Erba

,

a=o
ba c- B(Ro, n , k , a) whose turns tend to 0 p -adically

↳ ( V-N.IM , s -t - ba E P
" B. (R ,n,k

, a) V- a≥ M )

PROPOSITION : Brigid (Ro , r, n , K ) king H°(Ñn
,
⊕ w_k+£(P- t ) ) ④q.RO/pNRoC- j≥o

Erba
,

1
"

"

ii. Iy-H°(Ñn,⊕wk-£CP→)④q,Ro/PN
Ep- i - r\

.

↳← proven already
"
'

Eba :

(€1S , an > 4) 1- { balas, an)Ya) c- S(Ro , r ,
N
,
K)

The dashed arrow is an isomorphism

Pf : Infectivity :

Suppose Sba C- Brim'ᵈ(Ro
,
r
,
n ,k) can

be written as

a≥o

(Ep-i - r) - { Sa w/ Sa E SCR, n , ktacp-1 )) & Sa tending to 0 as a→ •
.

a ≥o

ba = 0 iff UN >0 ba = o mod pN (Knill intersection theorem)

Mod PN , Sba & Isa are finite sums
.

Suppose ba=_ Sa IO Mod

PN ya > M
.

As 0 = bm+ , = Ep_ , SM - rsM+, I Ep -ISM ,

we get sm ≤ 0 (since Ep- , is n -3rd' )



BM I Ep - , SM-1 - RSM = Ep-1 SM-1
A

A

B(n , K, M) Ep-i H°( n
, @
kt CM-1) (P-1) )

\
trivial int¥
-: bm = 0

Continuing Eba = 0 mod pN

Surjectirity :

Notice that

i

SCRO
,
n
, k+j(p -1 ) ) = H°(Ñn , @

④ R + £4"" ) ← ⊕ B(Ro
,
n
,
k
, a)j=0

SEE,aba - Erba

Given {sa
,
sa c- SCR

,
n
,
ktacp-1) ) tending to 0

,
we may decompose

Sa = S(Ep→)
"
bj (a) with bj(a) tending to 0 as a- • uniformly in j

i+j=a TBLRo.n.k.ir)

Then Ssa = I & (Ep_ ,)ibj(a) = { { ribs- (a) in S(Ro , r, n , K)
a a i+j=a a i.+ j=a

s(a) → 0 as a→ • ⇒ bj(a) → 0 as a→ 00

For each j , { ribjcitt) converges to BE c- B. (Ro
,
n

,
K
, j ) 4 b£ -0 as

i

g-→ v0 (as bj(a) → 0 uniformly in t)

: Lbj
'

g≥ ,

exists & has same image in S(Ro , r, n ,k) as Ssa
a≥o

COROLLARY : The following is an injection :

s(Ro
,
ran ,k) → S(Ro

,
1
,
n ,k)

f - ( (EIS ,
✗
n ,
Y) 1- (EIS

, an ,rY)
1£ f- (EIS

, an ,rY ))

Pf :

Iba - ( (E/ S , ✗n , Y ) → I baCEIS.tn) @ Y)
"

= Era ba(E/S , a.) Ya)
A

11

Brigid (Ro ,r,n, K ) graba c- Brigid (Ro
,
I,n,k)

{ raba = 0 ⇒ raba = 0 V- a ⇒ ba=0 Ya
↑
r is nzd

☐ .



INTERPRETATION VIA FORMAL SCHEMES :

For Ro p - adically complete and re Ro

f. completion along p of Specmn symÑ-
Ep-i - r

consider the formal scheme Mn ( Ro
,
r ) corresponding to the functor

s - lim-specmnxrypn.ro (sym Ñ / (Ep- i - r ) ) (s )
N

As Mn is affine ,
this is just the space X consisting of prime ideals of SYMÑKEP, - r )

that contain P with Ox = Lily @sm%pn )

w④k corresponds to a module F on Osym I/(Ep, ,- rj.VN ,
F/ PN gives us a mod PN

module
,
which gives us a quasicoherent sheaf on X whose global sections are

Iim H°( Mn ④ RYpNR◦ ,
⊕ w⊕R+£l""/Ept - r )

←
= Mn ( Ro , r , n , K )

N
I≥o

Similar stuff can be said for Ñn
.

§7 . g- expansion for r =L

PROPOSITION : let KE Ro be s-t.se/pN for some N ≥ 1
. TFAE for f E S(R☐ ,

I
,
N
,
K) :

(1) f c- KS (Ro , L, N , K)

or expansions of f all lie in × - Roffn] [[q]]

(3) On each of the acn) connected components of Ñn ④
zany I[tn , 5N] ,

3- at least one cusp where the g-expansion of f lies in × - Ro[5n][[q]]

Pf : (1) ⇒ (2) ⇒ (3) is clear
.

We have

S(Ro/ ✗Ro ,
1
,
n
,
K) I BʳiÑᵈ( Ro / ✗ Ro

,
1. n ,k )← Brigid (Ro

,
I ,n,k)/ × - Brigid(Ro , 1 , n , K)

Replacing Ro by Ro/✗Ro
,
we have ✗ = 0 & p is nilpotent

.

M

& its g-expansion at-: f e Brigid ( Ro , 1 , n ,k) is a finite sum Sba
a.=D

C- Can] , ✗
n , Epi

'

) is that of
M

ba Epi
" S bae

a } aime modular form by the way !
a=o

=

a=o

E



M

By hypothesis . { ba (Ep- i )M
"

has g- expansion 0 at one or more cusps on each geometric connected

a=o

component of Ñln . By g- expansion principle , {balF-p-ilm-a-0.BY virtue of the isomorphisms
below

,
Iba =0 .

M

⊕ B(Ro , n , b.a) → s(Ro , h ,
k -1 Mlp -17) (discussed earlier)

a=O

Sba 1- { baEp↑
-a

☐ .

Cor : f has 0 g- expansion ⇒ f- = 0 - By (3) ⇒ (1) , f E PNSCRo.1.n.to UN
,
-

'

- is 0
.

PROPOSITION : Suppose 3- a power series fila) C- Ro[5n][[q] ] for each cusp ✗ of
Ñn

. TFAE :

1) The fin are g- expansions of ancnecessarily unique) element

f- ESCRO , I ,n,k)

2) For every power pn of p , I M > I s-t
- MEO Mod p

"" and a
" true

"
modular form gn C- s(Ro

,

n
, ktM(p-1)) whose g-expansions are

congruent mod pN to the given fx .

Pf : (1) ⇒ (2) :

If gn exists mod pn ,
then we can lift it to a modular form in Ro .

(obvious by base change fork> 0 conditions
,

but also true for the k=0 conditions specified
earlier) .

So
, replace Ro by RIP" Ro & suppose p is nilpotent .

WTS that f- is the a-expansion of a true modular form of level n &

wt k
'
≥ K

,
K' Ek mod pN

- ' (p -1)

As seen in proof of proposition above , for p nilpotent in Ro
, f has

the same g- expansions as 8/ Ep↑ where M >> 0 &
g is a true

modular form of weight Kt Mlp- 1)
. Multiplying top & bottom by suitable

power of Ep , ,
WMA ME 0 mod pN

-1
.

pN-1

Ep_, (9) ≤ I modp at each cusp ⇒ Ep- i (9) ≤ 1 mod P
"

& .: Ep? (a) =L
mod pn

⇒ f mod pN has same g-expansion as g.

pN-1
(2) ⇒ (1) . Multiply gn by powers of Ep_, if needed s-t- WMA

that weights K+ Mwcp- 1) of the gn are increasing with N

gN+ , - gn Emp?"
-MN

E PNSCRO
,
n
, kt-MN-ic.pt )) by g-expansion

principle .

Take go = 0



MN" - MN
) gives an element of SCRO

,
1.Mk)Hence

, § (gN+, - 8N Ep-1

whose g- expansions are congruent to those of gn mod PN .

§ 8- BASES FOR LEVELS 1 & 2

All of the above discussion needed n≥ 3
,

so that Mn was defined .

Suppose p≠ 2,3 .

Then Ep -1 is a modular form of level 1 lifting the Hasse inv .

For n≥ 3 , prime to p , Ro p - adically complete ,
re Ro

, 91264mL) acts on
the functor Fpu ,r,n by

GCE / S , an ,Y ) = (EIS ,
80th , Y ) (as Ep-1 doesn't depend on level

,

Ep-14 remains equal to r upon

changing level )

This induces action on M(Ro
,
r
,
n
,
K ) and on S(Ro , r, n , K) .

Notice that M(Ro
,
r ,
1
,
K) = M(R◦ , r , n , b)

"↳ ("n"

& S(Ro
,
r
, 1

,
K) = S(Ro , r , n , b)

"2174^2 )

Now
suppose n= 3 or n=4 .

Then 912 (IKI ) has order prime to p -1-2,3
(191212/32) / = 48

, 191212147L ) / = 96 )

consider the map P = *#m Eg , giving a projection onto invariants

Define B(1, K , j) = B( n , K, j)a↳(
"n ≥ )

= P( Bcn ,k,j) )

B(Ro , 1 , K , j) = B (Ro , n , k, I)ʰ↳(
"n ≥ )

= BCI , k , 's ) ④ Ro

↑ 214N]

P has a section
, being

a projection . So

commutes with base change

Define Brigid ( Ro , r, 1, K) = P(Brigid (Ro , r, n , K)) = (Bⁿtiᵈ(Ro , r , n ,k) )"- (74^2)
consisting of Eba where each ba is invariant by aLzG4n2)

Applying P to previous isomorphisms gives for r not a zero divisor

Brigid ( Ro
,
r
,
L
,
K) I S(Ro , r.tk )

Sba 1- ( (EIS , as , Y ) 1- { ba(Els , ✗e) Ya )



Now
, let P -1-2 & consider level 2 .

let F-
p- i

C- S(2[± ] , 2 , p- 1) be a lifting of the Hasse

invariant .

Let 4 , = kernel : 411442)- 947422 )

Level 4 structure induces a level 2 structure as F-[2) ↳ F-[4] ⇒ ⑦4212 - GE Glz (2/42)
leaves the level 2 structure unchanged iff g c- 9 ,

-: Gi invariants of level 4 modular forms give level 2 modular forms &

the projector P
,

= 1- 8g , gives us all the 41 invariants
.

# Gi

similar considerations as above give :

Brigid ( Ro , r, 2, R ) → s(Ro , r, 2, K) for r not a zero divisor


