GOAL :	Explain certain p-adic congruences using the theory of p-adic modular forms
OUTLINE	
	- Show that p-adic representations of the fundamental groups of certain
	schemes on which p is nilpotent conspond to certain coherent
	Sheanes with a Frobenius action
	- Representations corresponding to co on the ordinary locus are
	those coming from the stale quotient of ker [pm].
•	- These representations are highly nontrivial. Triviality for k tens
	pomere gines congruence relations on values of k
	- Definition of and application to modular forms of weight X,
. 1.2	O- NDIC OF POF CENTATIONIC OF LOCALLY FREE CHENNES
ςτ.	Y- KUIU KETKESENTKIIUNS & LUCKUUT TALU STICKVES
Let 9	, be a power of p, k a perfect field containing For

Sn : flat, affine Wn (k) scheme with normal, reduced, irreducible special fiber

Suppose Sn admits an endomorphism & which induces the or power mapping on the special fibre.

Proposition:

Pairs (H, F), where H is locally) Finite free Wn (For) modules cat M equivalence free sheaf of finite rank on Sn with continuous IT, (Sn) action] & F is an isom q H ~ H

Map from left to right is given as follows:

uses glatness Fr fixed points of OT, are just Wn (Fra) & M is recovered as the fixed points of Fr on global sections of HT (This gives fully faithful) Essential surgectivity: Given (H, F), WTS I a finite étale cover Th of Sh over which Hadmits a basis of F-fixed points. Shipping the proof: Essentially for n=1, we reduce to the fact that a f.d. v.s. over R with a q-linear automorphism is spanned by its fixed points Hilbert's 90 For n>1, we do an induction argument by solving for the equations that guarantee that an F-fixed basis over Sn-1 lefts to an F-fixed basis over Sn. Remark 1: The categorical equivalence respects tensor products étale site is "topologically invariant", so $\pi_1(S_m) = \pi_1(S_1)$ Remark 2: As S, is normal, reduced & irreducible, a representation of TI(SI) is just a suitably unramified representation of the Galois gp of the function field of S, Let of be the generic pt of SI $(n(n)/n(n)) \longrightarrow \pi_1(n(n), n)$ t Therefore, for a non-empty open UCSn. T4 (S, , M) [Representations of π, (Sn) } restriction { Representations of π, (U)} is fully faithful

\$2. APPLICATION TO MODULAR SCHEMES

Let n>3, pfn, q s.t. W(Eq) > primitive n'th roots of unity.

Mn & Wm (Hap) = U smooth curres corresponding to e.m. pairing given by S

Similarly, $M_n(W_m(F_n), 1) = U\bar{S}_m^3$ Note: S^sm, \overline{S}^{s}_{m} are smooth affine. Wm (Far) Schemes with geometrically connected fibres meromorphic growth modular forms condition / holomorphic modular forms aut of M(Wm(Fay), 1, n, k) $\& A S(W_m(E_N), 1, n, k):$ Recall the Frobenius $(\mathbf{q} \cdot \mathbf{f})(\mathbf{E}, \mathbf{\alpha}, \mathbf{Y}) = \mathbf{f}(\mathbf{E}/\mathbf{H}, \pi(\mathbf{\alpha}, \mathbf{y}), \mathbf{Y})$ canonical E_{p-1}^{-1} here p-subgp as r = 1as r = 1We save that op gives a ring homomorphism on wt o forms, inducing an automorphism of the appine schemes M(Wm(Frg), 1) & M(Wm(Frg), 1). q carries idempotents to idempotents & mod p, $q(e_{sr})(E, \alpha^n, Y) = e_{sr}(E^{(p)}, \pi(\alpha^n), Y')$ = 51 4 E E S3 LO otherwise q maps Sm to Sm & Sm to Sm 4 But notice that for o, the Frobenius aut of Wm (TFr), maps 5 to 3°. Therefore $q: S_m^s \longrightarrow S_m^{s^p} \cong S_m^s \times_{W_m(F_{q_v}),\sigma} W_m(F_{q_v}) = (S_m^s)^{(\sigma)}$ We view q as a o-linear endomorphism of Sm. Similarly for Sm q on M(Wm(Fq), 1, n, k) can be viewed as a q-linear endomorphism of work of for each primitive nth root of unity 5. Q: Which rep of $\Pi_1(\bar{S}_m^s)$ in a free $\mathbb{Z}/p^m\mathbb{Z} = Wm(\mathbb{H}_p)$ - module of rk 1 corresponds to $(\omega^{\otimes k}, \varphi)$?

(Suffrices to do for k=1, because the correspondence respects &)

Notice that we have a naturally occurring $\pi_1(S_m^s)$ representation on a $Z/p^m Z$ module : the étale quotient of kernel of p^m on the universal curve E

Consider
$$\pi: E \longrightarrow E/H = E^{(m)}$$
.
Denote by $\pi^m : E \longrightarrow E(m) \longrightarrow E^{(m)} \longrightarrow E^{(m)}$
 $k by \pi^m + k dual isogany: $E^{(m)} \longrightarrow E^{(m)}$
As the is degree p^m , $\pi^m = \pi^m = [p^m]$ is beauting π^m . $\operatorname{Im} E[p^m]$.
As the is degree p^m , $\pi^m = \pi^m = [p^m]$ is beauting of $\operatorname{Im} E[p^m]$.
P3: It is first to first to first once provide of Σ_n^m is degree f^m is determined because π^m is a degree f^m is f^m is an echanological by here f^m being field in f^m .
Moreover, f^m is provely inseparable, so if we don't growthened to a representation of $\pi_n(S_m^m)$, i.e., it is "unramified at oil.
P3: STS for $m=4$ is field of S1 is "unramified at oil.
P4: STS for $m=4$ is inset in interval prove f_h (f^m f^m) is smooth efficient f^m , such a cach expressive f^m is f^m is f^m is f^m .
 f^m is f^m is f^m is f^m is f^m is f^m is f^m .
 f^m is f^m is f^m is f^m is f^m is f^m is f^m .
 f^m is f^m .
 f^m is f^m is f^m is f^m is f^m .
 f^m is f^m is f^m is f^m is f^m .
 f^m is f^m is f^m is f^m .
 f^m is f^m is f^m in f^m is f^m .
 f^m is f^m is f^m in f^m in f^m .
 f^m is f^m is f^m in f^m .
 f^m is f^m is f^m in f^m in f^m .
 f^m is f^m is f^m in f^m .
 f^m is f^m is f^m in f^m .
 f^m is f^m in f^m i$

As all points of <9"> are rational, the entire decomposition group acts trivially.

THEOREM: The rep of π, (S^sm) on ker π^m corresponds to (ω, φ) Idea of proof: • STS for Sm as restriction of πι(Sm) reps to πι(Sm) is fully faithful Take a finite étale cover T of Sm trivializing the representation so that (Z/P^mZ)_T ~ (ker π̃^m)_T. Each point of (ker π̃^m)_T gives a map $(\mathbb{Z}/\mathbb{P}^m\mathbb{Z})_{+} \longrightarrow (\ker \tilde{\pi}^m)_{+}$ By Cartier duality (ker π^m)_τ → (μp^m)_τ → (Gm)_τ an invariant differential 4----- Olt coming from E pulls back t ₩ We get a map $(\ker \tilde{\pi}^m)_T \longrightarrow \tilde{\omega}_T$ inducing an isomorphism. (ku ňm) ~ & Z/pmz Or ~~ WT THEOREM: 1) $\Pi_1(\overline{S}_m) \longrightarrow \operatorname{Aut}(\operatorname{ker}(\widetilde{\pi}^m)_+) \simeq (\mathbb{Z}/p^m\mathbb{Z})^{\times}$ is surjective 2) Restriction to $\pi_i(U)$ for U nonempty open C \overline{S}_m^s remains surjective Idea of proof: Let K = function field of S1. As before, STS Gal (K^{sep}/K) \rightarrow Aut (ker V^m in E^(pm)(K^{sep})) is surjective In fact, inertial group of Qx at any supersingular elliptic curve is already surjective,

Proof follows from the following theorem :

Let E, as be an elliptic curve oner R[[A]] with Hasse invariant A, k being alg. closed of charp. Then the extension of R((A)) obtained by adjoining points of Rer V^m is fully ramified of degree p^{m-1}(p-1) with Galoris group (Z/p^mZ)*

This is proven by computing valuations of points in ker (V^M) in the formal group of E using Newton polygons.

§4: APPLICATIONS TO CONGRUENCES B/W MODULAR FORMS

COROLLARY: Let REZ, m>1, p>2

TFAE :

- 1) $R \equiv 0 \mod (p-1)p^{m-1}$
- 2) kth tensor power of the π(Sm)-rep on the étale quotient of ker [pm] is trivial
- 3) The sheaf $\omega^{\otimes k}$ on \overline{S}_m^{S} admits a nowhere vanishing section fixed by φ .
- 4) Over a mon empty open UC 35, work admits a northere vanishing section fixed by q
- 5) Over \overline{S}_{m}^{S} $\omega^{\otimes R}$ admits a section whose qr-expansion at one of the cusps of \overline{S}_{m}^{S} identically 1.
- 6) Over a non empty open $U \subset \overline{S}_m^s$ which contains a cusp, $\omega^{\otimes k}$ admits a section whose q-expansion at that cusp is identically 1.

Proof:

(1)
$$\Leftrightarrow$$
 (2): In $\pi_1(\overline{S^3}_m) = \operatorname{Aut}(\mathbb{Z}/p^m\mathbb{Z}) \simeq (\mathbb{Z}/p^m\mathbb{Z})^*$

... k tenoor pomen is trivial

 $\Leftrightarrow k is an exponent of (2/pm Z)^{X}$ $\Leftrightarrow k \equiv 0 \mod p^{m-1} (p-1)$

 $\omega_{T'}^{\otimes k} = (\mathbf{I}/p^{m}\mathbf{Z}) \times \mathbf{Z}/p^{m}\mathbf{Z} \mathcal{O}_{T'}$ (2) = (3) : $\omega^{\otimes k} = \left(\mathbb{Z}_{p^{m}\mathbb{Z}}^{\vee} \otimes \mathcal{O}_{\tau'} \right)^{\pi_{1}(\overline{S}_{m}^{s})}$

→ w^{⊗k} $= \mathbb{Z}/p^m\mathbb{Z} \vee \otimes \mathcal{O}_{\overline{S}_m^s}$ π_i (S^s_m) acts trivially on v Ĵ

free of the 1

(3) =) (2):
$$\omega^{\otimes k} \cong \Theta_{\overline{s}_{m}^{s}} \vee_{k}$$
 the given section fixed by q

The representation of The (S^sm) is obtained by faling an etale coner oner which a q - fixed basis exists & taking the global sections fixed by q.

thre, the trivial efall cover works, so we get the trivial rep.

(3) 👄 (५) ः	restriction functor is fully faithful
(3) ⇒ (5) :	Using the explicit formula for p
(5) 🔿 (3) :	Let f have q -expansion 1. $q(f) - f$ has q expansion 0. By q -expansion principal for modular forms with growth condition $r=1$, we get that $q(f) = f$
مَ (٤) 🖨 (٢)	same as (3) (5)
Let U C S ^S I Therefore, any P-invariant The extension E K/(P-1) is	2e nonempty open containing a cusp. St (1) holds, then we know there exists a nonvanishing q-invariant section f on S ^s m. q-invariant non vanishing section of co ^{30 k} on U, q, must differ from fly by a unit in Or, i.e. an element of W(Fp) [×] . Therefore, g is extendable. is unique because U contains a cusp + q-expansion principle.
φ- învariant	non-vanishing sections on U are $W_m(\mathbb{F}_p)^{\times}$ multiples of $\mathbb{E}_{p-1}^{k/p-1}$.
COROLLARY:	Suppose $f_i \in S(W(\mathbb{F}_n), 1, n, k_i)$ $i=1, 2$ b $k_1 \ge k_2$
	Suppose $q_{-expansions} q_{f_1} \& f_2$ on at least one cusp $q_{f_m}(W(\mathbb{F}_q), 1)$ are congruent mod $p^m \& f_1(q) \not\equiv 0$ mod p at that cusp. Then $k_1 \equiv k_2 \mod p^{m-1}(p-1)$
Pf: Reduc cusy	ie mod p^m . By hypothesis, fi, fz are invertible in a mbhd U of the , in some \overline{S}_m^s .
5 2/5	i is an invertible section of $c_2^{k_2-k_1}$ on U with q-expansion 1
By $(6 \Rightarrow 1)$,	$R_2 - K_1 \equiv 0$ mod $p^{m-1}(p-1)$

COROLLARY: Let f be a true modular form of level n & wt k on To (p), holomorphic at unramified cusps, and defined over fraction field K of W (Fg).

Suppose that each unramified cusp, all except the constant term of the q-expansion are in $W(\mathbb{F}_{q_1})$. Then the constant terms of the q-expansions lie in $p^{-m} W(\mathbb{F}_{q_2})$ where m is the largest integer stroke $k \equiv 0 \mod (p-1)p^{m-1}$

Pf: Let mo be min s-t· p^{mo}f has constant terms f or-expansions on unramified cusps in W(Ffr) Let g ε S(W(Ffr), 1, n, k) be defined as g(E, ω, α_n, Y=E⁻_p) = p^{mo}f(E, ω, α_n, H)

> Since no is minimal, g has a q-expansion with constant term a unit u in $W(\mathbb{F}_q)$. $u^{-1}q$ has a expansion $1 + p^{m_0} \xi$, $a_i e^{i \omega}$. Mod p^{m_0} , $u^{-1}q$ has q-expansion 1. By (6) =1(1), $k \equiv 0$ mod $p^{m_0-1}(p_{-1})$

§5. MODULAR FORMS OF WEIGHT X

Let
$$X \in \operatorname{End}(\mathbb{Z}_{p}^{\times}) \cong \lim_{n \to \infty} \operatorname{Form}(\mathbb{Z}_{pmZ})^{\times} \cong \lim_{n \to \infty} \mathbb{Z}/q(p^{m})\mathbb{Z}$$

Consider $P: \pi_{1}(\overline{S}_{m}^{\times}) \longrightarrow \operatorname{Aut}((\operatorname{laser} \pi_{m})_{T}) \cong (\mathbb{Z}/p^{m}\mathbb{Z})^{\times}$ conseponding to $(\mathfrak{Q}, \mathfrak{Q})$
 g are compatible as m varies, $\mathfrak{h} :: so are $\mathfrak{X} \circ \mathfrak{g}$
Denote by $(\mathfrak{so}^{\times}, \mathfrak{Q})$, the invertible sheaf corresponding to $\mathfrak{X} \circ \mathfrak{g}$. These
are compatible as m varies.
Definition : A p-adic modular form of varight \mathfrak{X} and level \mathfrak{n} , holomorphic
 $\mathfrak{at} \ \mathfrak{ao}, \ \mathfrak{is} \ \mathfrak{a}$ compatible form of \mathfrak{g} varight \mathfrak{X} and level \mathfrak{n} , holomorphic
 $\mathfrak{at} \ \mathfrak{ao}, \ \mathfrak{is} \ \mathfrak{a}$ compatible form of \mathfrak{g} varight \mathfrak{X} and level \mathfrak{n} , holomorphic
 $\mathfrak{at} \ \mathfrak{ao}, \ \mathfrak{is} \ \mathfrak{a}$ compatible form of \mathfrak{g} varight \mathfrak{X} and level \mathfrak{n} , holomorphic
 $\mathfrak{at} \ \mathfrak{ao}, \ \mathfrak{so} \ \mathfrak{a}$ compatible form \mathfrak{g} matrix \mathfrak{g} block sections $\mathfrak{g} \ \mathfrak{so}^{\times} \mathfrak{ao} \ \mathfrak{m}$
Remark 1: If $\mathfrak{X} = \mathfrak{k} \in \mathbb{Z} \ \mathsf{C} \ \mathsf{End}(\mathbb{Z}_{p}^{\times})$, we recover $S(W(\mathbb{K}_{p}), \mathfrak{s}, \mathfrak{n}, \mathfrak{h})$,
 $\mathfrak{so}_{\mathcal{X} \circ \mathfrak{g}} \equiv \mathfrak{g}^{\otimes \mathfrak{h}}$
Remark 2: For any $\mathfrak{X}, (\mathfrak{so}^{\times}, \mathfrak{q}) \ \mathfrak{m} \ \overline{S}_{n}^{\times}$ is isomorphic to $(\mathfrak{so}^{\otimes \operatorname{Rm}}, \mathfrak{q})$ for
any $\mathfrak{k}_{m} \in \mathbb{Z} \ \mathsf{str} \ \mathfrak{k}_{m} \equiv \mathfrak{X} \ \mathsf{mod} \ \mathfrak{q}(\mathbb{P}^{m})$
Note: Suppose $\mathfrak{k}_{n} \equiv \mathfrak{k}_{n} \equiv \mathfrak{X}$, then the isomorphic varue $(\mathfrak{so}^{\otimes \operatorname{Rm}}, \mathfrak{q}) \stackrel{\mathfrak{t}}{\mathfrak{so}} \ \mathfrak{so}_{\mathfrak{m}} \ \mathfrak{so}_{\mathfrak{m}}$$

THEOREM :

 Let X ∈ End(Zp), & f be a modular form of weight X & level n , holomorphic at ∞, defined over W(Fq). Then ∃ a sequence of integers 0≤ki≤k2≤k3≤... s.t.

$$k_m \equiv \chi \mod q(p^m)$$

and a sequence of the modular forms fi of weight ki & level m, holomorphic at a s.t.

2) Conversely, let {km} m ≥ 1 be an <u>arbitrary</u> sequence of integers, and suppose given a sequence fm ∈ S(W(Fq)), 1, n, km) of p-adic modular forms of weights ki sit.
fm+1 = fm mod p^m in q - expansion at each cusp Im sit. fm ±0 mod p^m in q-expansion
Then the sequence of weights km converges to X ∈ End(Zp) & 3! modular form f= lim fm q wt X & level n, hol at ∞, sit.
fm = f mod p^m in q expansion

Outline of pf: 1) Prom definition.
2) Multiply fin by high powers of Ep-1 to get the weights in increasing order & positive
• Consider the limit or-expansion. 3 max mo s-t ⁻ p ^{mo} divides the or-expansion.
Then fm = p ^{mo} gm for m>mo Where gm is a wt km p-adic modular form w/ qv- expansions 70 mod p, of
 Using the sequence {9m+m.o.}, we get a conquence relation on weights & they converge to X. p^{mo}gm+m mod p^m define a compatible family
of sections of con Sm
Let X ∈ End Zp [×] . Let 0 ≤ k ₁ ≤ k ₂ ≤ ··· be a sequence of integers s·t: k _m = X mod q(p ^m)
Let for be a sequence of the modular forms of weight kon & livel n on To(p), hol at the unramified cusps & defined over Frac W(For) = K.
Suppose the non-constant terms of all the of expansions of fm are in W(Fr) & at each cusp
$f_{m+1}(q_{2}) - f_{m+1}(q_{2}) \equiv f_{m}(q_{2}) - f_{m}(q_{2}) \mod p^{m}$
nen: i) if X≠0, let mo ke the largest integer s-t·X≡0 mod φ(p ^{mo}). Then for m≥mo, p ^{mo} f _m has integral q-expansions.
2) Further, at each cusp, we have the congruence on constant terms $p^{m_0} f_{m+1}(0) \equiv p^{m_0} f_m(0) \mod p^{m-m_0}$ for all $m \ge m_0$.

$$Pf: 1) is as before
2) Let $h_m := p^{m_0} f_{m+1} - p^{m_0} f_m \frac{(k_{m+1} - k_m)/p-1}{p} \frac{(k_{m+1} - k_m)/p}{p} \frac{(k_{m+1} -$$$

EXAMPLE :

Take
$$f_{m} = G_{km}$$
 with q-expansion given by $-\frac{b_{km}}{2k_{m}} + \frac{c}{2} \sigma_{k-1}(n) s^{n}$
Choose k_{m} to be strictly microscopy with m (force $k_{m}-1 \ge m$)
sto they converge to a desired ∞
Claim: $f_{m+1}(q_{1}) - f_{m+1}(0) \equiv f_{m}(q_{1}) - f_{m}(0) \mod p^{m}$
 p_{1}^{m} :
 $couple q q^{n}$ in LHS - RHS is:
 $\frac{c}{2} \left(d^{k_{m+1}-1} - d^{k_{m}-1} \right) + \sum_{d,n} \left(p^{k_{m}-1} \left(\frac{d}{p} \right)^{k_{m}-1} - p^{k_{m}-1} \left(\frac{d}{q} \right)^{k_{m}-1} \right)$
 $(d_{1}p) = 1$ ($d^{k_{m+1}-k_{m}} - 1$) $= p^{k_{m}-1} \left(\frac{d}{p} \right)^{k_{m}-1}$
 $= d^{k_{m}-1} \left(d^{k_{m+1}-k_{m}} - 1 \right) = p^{k_{m}-1} \left(\frac{d}{p} \right)^{k_{m}-1}$
 $d_{1}m = d^{k_{m}-1} \left(d^{k_{m+1}-k_{m}} - 1 \right) = p^{k_{m}-1} \left(\frac{d}{p} \right)^{k_{m}-1}$
 $= 0$ mode p^{m} $\equiv 0$ mode p^{m}
 $g_{1} = 0$ mode p^{m} k
 $k_{m_{1}} \equiv k_{m}$ mode $q(p^{m})$
 $a_{m} = p^{m} k_{m} \left(\frac{c}{2} d^{k_{m}-1} + \frac{c}{2} p^{k_{m}-1} \left(\frac{d}{2} \right)^{k_{m}-1} \mod p^{m} \frac{d}{d} \frac{d}$

