GOAL: Explain curtain p-adic congruences using the theory of p-adic modular forms

OUTLINE

- Show that p-adic representations of the fundamental groups of centian schemes on which p is nilpotent correspond to certain coherent sheaves with a frobenius action
- Representation corresponding to \underline{w} on the ordinary locus are those coming from the étale quotient of ken $\left[\mathrm{p}^{m}\right]$.
- These representations are highly nontrivial. Triviality for k tensor powers gives congruence relations on values of k
- Definition of and application to modular forms of weight x, $x \in \operatorname{End}\left(T_{p}^{x}\right)$
§1. P-ADIC REPRESENTATIONS \& LOCALLY FREE SHEAVES

Let q be a power of p, k a perfect field containing \mathbb{F}_{q} $w_{n}(k)$: ring of wilt vectors of length n
S_{n} : flat, affine $W_{n}(k)$ scheme with normal, reduced, irreducible special fiber Suppose S_{n} admits an endomouphioin Φ which induces the o power mapping on the special fibre.

Proposition:

Map from left to right is given as follows:

$$
\text { Consider } \pi^{\prime}\left(S_{n}\right) \longrightarrow \operatorname{Aut}_{\left(T_{n} / S_{n}^{\prime}\right)}^{\pi}\left(\mathbb{F}_{n}\right) M
$$

finite étale galois S_{n}-scheme
3! φ-linear map Φ_{T} on T_{n} inducing q-power endomorphism on special fibre
$g \in \operatorname{Aut}\left(T_{n} / S_{n}\right)$ acts on H_{T} via $m \otimes x \longmapsto g(m) \otimes g^{-1 *} x$ \& commutes w / Q_{T} (H, F) is given by standard descent
F_{T} fixed points of $\theta_{T_{n}}$ are just $W_{n}\left(\mathbb{F}_{q}\right)$
\& M is recovered as the fixed points of F_{T} on global sections of H_{T} (This gives fully faithful)

Essential suyectivity:
Given (H, F), wTS \exists a finite étale cover T_{n} of S_{n} over which H admits a bass of F-fixed points.

Skipping the proof: Essentially for $n=1$, we reduce to the fact that a f.d. v.s. over \bar{k} with a op-linear automouphiom is spanned by its fixed points

Hilbert's 90
For $n>1$, we do an induction argument by solving for the equations that guarantee that an F-fixed basis over S_{n-1} lefts to an F-fixed basis over S_{n}.

Remark 1: The categorical equivalence respects tensor products

Remark 2: étale site is "topologically invariant", so $\pi_{1}\left(S_{m}\right)=\pi_{1}\left(S_{1}\right)$
As S_{1} is normal, reduced \& irreducible, a representation of $\pi_{1}\left(S_{1}\right)$ is just a suitably unramified representation of the Galois op of the function field of S_{1}

Therefore, for a non-empty open $u \subset S_{n}$.
 is fully faithful
§2. APPLCATION TO MODULAR SCHEMES

Let $n \geq 3, p \not p n$, q st. $W\left(\mathbb{F}_{q}\right)>$ primitive n 'th roots of unity.
$M_{n} \otimes W_{m}\left(\mathbb{F}_{v}\right)=\bigcup_{\substack{\text { primitive } \\ n \\ n^{+h} \\ \text { root }}}$ smooth cukes corresponding to e.m. pairing given by s
(Similar for \bar{M}_{n})

Recall: p-adic modular forms with growth condition gwen by $r=1$ correspond to sections of wok on

$$
\begin{aligned}
& \text { scheme }
\end{aligned}
$$

Similarly,

$$
\bar{M}_{n}\left(W_{m}\left(F_{q}\right), 1\right)=U \bar{S}_{m}^{3}
$$

Note: $S_{m}^{s}, \bar{S}_{m}^{3}$ are smoth affine $W_{m}\left(\mathbb{F}_{q}\right)$ schemes with geometrically connected fibres

We saw that Φ gives a ring homomorphism on wt 0 forms, inducing an automosphiom of the affine schemes $M\left(W_{m}\left(\mathbb{F}_{q}\right), 1\right)$ \& $\bar{M}\left(W_{m}\left(\mathbb{F}_{q}\right), 1\right)$.

9 carries idempotents to idempotents \& $\bmod p, \varphi\left(e_{3 p}\right)\left(E, \alpha^{n}, y\right)=e_{g p}\left(E^{(p)}, \pi\left(\alpha^{n}\right), y^{\prime}\right)$

$$
= \begin{cases}1 & \text { if } E \in S^{3} \\ 0 & \text { otherwise }\end{cases}
$$

$\Rightarrow \quad \Phi$ maps S_{m}^{S} to $S_{m}^{3^{p}}$ \& \bar{S}_{m}^{S} to $\bar{S}_{m}^{3^{p}}$

But notice that for σ, the Frobenins alt of $\omega_{m}\left(\mathbb{F}_{v}\right)$, maps 5 to 3^{P}.
Therefore $\varphi: S_{m}^{3} \rightarrow S_{m}^{3} \cong S_{m}^{3} x_{W_{m}\left(\mathbb{F}_{q}\right), \sigma} W_{m}\left(\mathbb{F}_{q}\right)=\left(S_{m}^{3}\right)^{(\sigma)}$
We view q as a σ-linear endomorphism of $S^{3} m$.
Similarly for \bar{S}_{m}^{s}
φ on $M\left(W_{m}\left(\mathbb{F}_{q}\right), 1, n, k\right)$ can be viewed as a q-linear endomorphism of $\left.\omega^{\otimes k}\right|_{S_{m}^{3}}$ for each primitive $n^{\text {th }}$ root of unity 5 .

Q: Which rep of $\pi_{1}\left(\bar{S}_{m}^{3}\right)$ in a free $\mathbb{Z} / p^{m} \mathbb{Z}=W_{m}\left(\mathbb{E}_{p}\right)$ - module of $r k 1$ corresponds to $(\omega \otimes R, \Phi)$?
(Suffices to do for $k=1$, because the correspondence respects (2))

Notice that we have a naturally occurring $\pi_{1}\left(S_{m}^{s}\right)$ representation on a $\mathbb{Z} / p^{m} \mathbb{Z}$ module: the étale quotient of kennel of p^{m} on the universal curve E

Consider $\pi: E \xrightarrow[\downarrow^{\operatorname{deg}} P]{ } E / H=E^{(Q)}$.
Denote by $\pi^{m}: E \rightarrow E^{(Q)} \rightarrow E^{\left(Q^{2}\right)} \rightarrow \ldots\left(E^{\left(Q Q^{m}\right)}\right.$
\& by $\frac{\pi}{\pi}^{m}$ the dual isogeny: $E^{\Phi(m)} \longrightarrow E \quad d=\operatorname{ku}\left[p^{m}\right]$
As π_{m} is degree $p^{m}, \quad \overleftarrow{\pi}^{m}{ }_{0} \pi^{m}=\left[p^{m}\right]$ \& ken $\overleftarrow{\pi}^{m}$. $\operatorname{Im} E\left[p^{m}\right]$
Claim: ken $\check{\pi}^{m}$ is the étale quotient of $\operatorname{Im} E\left[P^{m}\right]$.
Pf: It is flat \& $f \cdot p$. over S_{m}^{S} because $\check{\pi}^{m}$ is
Unramified because every field valued point of S_{m}^{3} is inchon $P \cong \& E^{\left(P^{i}\right)} \quad \bmod P, E^{\left(Q^{i}\right)}$ are all ordinary elliptic curves $\cong E\left(P^{i}\right)=E x_{k, \sigma} k x_{k, \sigma} k \times \ldots x_{k, \sigma}$
π^{m} is rust $F^{m} \quad \& \overleftarrow{\pi}^{m}$ is V^{m}
${ }^{\uparrow}$ Frobenius
© verscheibung
Ordinary elliptic curves are characterized by ken V^{m} being étale, \therefore so is per π^{m}

Moreover, F^{m} is purely inseparable, so if we don't quotient by ken π_{m}, can't possibly get anything étale.

Lemma: The representation of $\pi_{1}\left(S_{m}^{s}\right)$ on ken $\bar{\pi}^{m}$ extends to a representation of $\pi_{1}\left(\bar{S}_{m}^{s}\right)$, i.e. it is "unramified at ∞ ".

Pf \quad Let K be function field of S_{1}^{S} (Topological invariance of étale site)
want ko show that inertia group of Gal ($K^{\text {sep }} / K$) at each asp acts trivially on $\operatorname{ker}\left(V^{m}\right)$

As ken $\left(v^{m}\right)$ is smorth affine / \mathbb{F}_{q}, suffices to check the action is trivial on each of its generic pts $\in\left(\text { ken } V^{m}\right)_{k}$
As (ben Nm) k is étale over K, $\therefore K^{\text {sep points }}$ are dense, $\&$ we can check action on ken V^{m} of $E_{k}^{(p m)}$ ($\left.K^{\text {sep }}\right)$

At the cusp $k((q)) \quad\left(k=\mathbb{F}_{q}\right)$, inverse image of E is $\left.T\left(q^{n}\right) / k\left(C_{q}\right)\right)$ $E^{\left(p^{m}\right)}=T\left(q^{n p m}\right) \& \dot{\Pi}^{m}$ is the map $T\left(q^{n p}\right) \rightarrow T\left(q^{n}\right)$ given by division by $\left\langle q^{n}\right\rangle$

As all points of $\left\langle q^{n}\right\rangle$ are rational, the entire decomposition group acts trivially.

THEOREM: The rep of $\pi_{1}\left(\bar{S}_{m}^{3}\right)$ on ken $\tilde{\pi}^{m}$ corresponds $\pi_{0}(\underline{\omega}, \varphi)$

Idea of proof:

- STS for S_{m}^{3} as restriction of $\pi_{1}\left(S_{m}^{S}\right)$ reps to $\pi_{1}\left(S_{m}^{s}\right)$ is fully faithful
- Take a finite étale cover T of S_{m} trivializing the representation, so that $\left(\mathbb{Z} / \mathrm{P}^{m}\right)_{T} \xrightarrow{\longrightarrow}\left(\mathrm{ken} \tilde{\pi}^{m}\right)_{T}$. Each point of $\left(\text { ken } \tilde{\pi}^{\prime}\right)_{)_{T}}$ gives a map $\left(z / p^{m} 2\right)_{T} \longrightarrow\left(k \mu \pi_{n}\right)_{T}$
- By Cartier duality $\left(\text { ger } \pi^{m}\right)_{T} \longrightarrow\left(\mu_{p m}^{m}\right)_{T} \hookrightarrow\left(4_{m}\right)_{T}$ an invariant differential \&- ...ils......... $\frac{d t}{t}$
coming from E
we get a map: $\left(\text { ken } \check{\pi}^{m}\right)_{T} \longrightarrow \underline{\omega}_{T}$ inducing an isomorphisms:

$$
\left(\text { ken } \tilde{\pi}^{m}\right)_{T} \otimes_{Z / p^{m} I} \theta_{T} \xrightarrow{\sim} \underline{\omega}_{T}
$$

THEOREM: 1) $\pi_{1}\left(\bar{S}_{m}^{s}\right) \rightarrow \operatorname{Aut}\left(\right.$ ken $\left.\left(\bar{\Pi}^{m}\right)_{T}\right) \simeq\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{x}$ is surfective 2) Restriction to $\pi_{1}(u)$ for u nonempty open $\subset \bar{S}_{m}^{s}$ remains suyective

Idea of proof: Let $K=$ function field of S_{1}^{3}.
As before, STS gal $\left(K^{\text {sep }} / K\right) \rightarrow$ Ant $\left(k e r V^{m}\right.$ in $\left.E^{\left(P^{m}\right)}\left(K^{\text {sep }}\right)\right)$ is subjective

In fact inertial group of a_{K} at any supersingular elliptic cure is already suyective.
Proof follows from the following theorem:
Let E, ω be an elliptic cure over $k[[A]]$ with Base invariant A, k being. alg. closed of char p. Then the extension of $k((A))$ obtained by adjoining points of ken V^{m} is fully ramified of degree $p^{m-1}(p-1)$ with Galois group $\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{x}$
This is proven by computing valuations of points in bel $\left(y^{m}\right)$ in the formal group of $E^{\text {p }}$ using Newton polygons.
§4: APPLICATIONS TO CONGRUENCES B/W MODULAR FORMS

COROLLARY: Let $k \in \mathbb{Z}, \quad m \geqslant 1, p>2$
TFAE:

1) $k \equiv 0 \bmod (p-1) p^{m-1}$
2) $k^{\text {th }}$ tensor power of the $\pi_{1}\left(\bar{S}_{m}^{S}\right)$-rep on the étale quotient of ken $\left[p^{m}\right]$ is trivial
3) The sheaf $\underline{\omega}^{\otimes k}$ on \bar{S}_{m}^{S} admits a nowhere vanishing section fixed by φ.
4) Over a non empty open $U \subset \bar{S}_{m}^{S}$, $w^{\otimes R}$ admits a nowhere vanishing section fixed by φ
5) Over \bar{S}_{m}^{3}, $\omega^{\otimes R}$ admits a sedion whose q-expansion at one of the cusp's of \bar{S}_{m}^{s} is identically 1 .
6) Over a non empty open $U \subset \bar{S}_{m}^{S}$ which contains a cusp, w admits a section whose q-expansion at that cusp is identically 1.

Proof:
(1) $\Leftrightarrow(2): \quad \operatorname{Im} \pi_{1}\left(\bar{S}^{s} m\right)=A u t\left(\mathbb{Z} / p^{m} \mathbb{Z}\right) \simeq\left(Z / p^{m} Z\right)^{x}$
$\therefore \quad k$ tensor power is trivial
$\Leftrightarrow k$ is an exponent of $\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{x}$

$$
\Leftrightarrow \quad k \equiv 0 \quad \bmod \quad p^{m-1}(p-1)
$$

$(2) \Rightarrow(3):$

$$
\begin{aligned}
& \omega^{\otimes R}=\left(\mathbb{Z} / p^{m} \mathbb{Z}\right) w^{\text {free generator }} \otimes_{\mathbb{Z} / p^{m} \mathbb{Z}} \theta_{T^{\prime}} \\
& \omega^{\otimes R}=\left(\mathbb{Z} / p^{m} \mathbb{Z} w \otimes \theta_{T^{\prime}}\right)^{\pi_{1}\left(\bar{S}_{m}^{S}\right)}
\end{aligned}
$$

$\pi_{1}\left(\bar{S}_{m}^{s}\right)$ acts trivially on $v \quad \Rightarrow \quad \omega^{\otimes R}=\mathbb{Z} / p^{m} \mathbb{Z} v \otimes \theta_{S_{m}^{s}}$

free of ok 1
$\Rightarrow v \otimes 1$ is a section as required
(3) \Rightarrow (2) : $\underline{\omega}^{\otimes k} \cong \theta_{\bar{S}_{m}^{3}} \underline{v}_{c}$ the given section fixed by Q

The representation of $\pi_{1}\left(\bar{S}_{m}^{S}\right)$ is obtained by taking an étale cover over which a a -fixed basis exists \& taking the global sections fixed by Q.
Here, the trivial etale cover works, so we get the trivial rep.
(3) $\Leftrightarrow(4)$: restriction functor is fully faithful
(3) \Rightarrow (5) : Using the explicit formula for φ
(5) \Rightarrow (3): Let f have q-expansion 1. $\varphi(f)-f$ has q expansion 0 . By q-expansion puncupal for modular forms with growth condition $r=1$, we get that $Q(f)=f$
$(4) \Leftrightarrow(6)$ is same as (3) $\Leftrightarrow(5)$

Let $U \subset \bar{S}_{m}^{s}$ be nonempty open containing a cusp.
If (1) holds, then we know there exists a nonvamishing Q-invariant section f on \bar{S}_{m}^{s}. Therefore, any φ-invariant non vanishing section of $\omega^{0 k}$ on u, g, must differ from fla by a ϕ-invariant unit in θ_{u}, ie. an element of $W_{m}\left(\mathbb{F}_{p}\right)^{x}$. Therefore, g is extendable. The extension is unique because u contains a cusp $+q$-expansion principle.
$E_{p-1}^{k /(p-1)}$ is a nonvanishing section with q-expansion 1 . By the above argument, all φ-invariant non-vanishing sections on U are $W_{m}\left(W_{p}\right)^{x}$ multiples of $E_{p-1}^{k / p-1}$.

COROLLARY: Suppose $f_{i} \in S\left(W\left(\mathbb{F}_{q}\right), 1, n, k_{i}\right) \quad i=1,2 \& k_{1} \geqslant k_{2}$
Suppose q-expansions of $f_{1} \& f_{2} o n$ at least one cusp of $\bar{M}_{n}\left(w\left(\mathbb{F}_{q}\right), 1\right)$ are congruent $\bmod p^{m} \& \quad f_{1}(q) \neq 0 \quad \bmod p$ at that cusp.
Then $k_{1} \equiv k_{2} \bmod p^{m-1}(p-1)$
Pf: Reduce $\bmod p^{m}$. By hypothesis, f_{1}, f_{2} are invertible in a mold u of the cusp, in some \bar{S}_{m}^{S}.
f_{2} / f_{1} is an invertible section of $\underline{w}^{k_{2}-k_{1}}$ on U with q-expansion 1
By $(6 \Rightarrow 1), \quad k_{2}-k_{1} \equiv 0 \quad \bmod \quad p^{m-1}(p-1)$

COROLLARY: Let f be a true modular form of level n \& wt k on $\Gamma_{0}(P)$, holomorphic at unramified cusps, and defined over fraction field K of $W\left(\mathbb{F}_{v}\right)$.
Suppose that each unramified cusp, all except the constant term of the q-expansion are in $W\left(\mathbb{F}_{q}\right)$. Then the constant terms of the q-expansions lie in $p-m W\left(\mathbb{F}_{q}\right)$ where m is the largest integer sit. $k \equiv 0 \bmod (p-1) p^{m-1}$

Pf: Let m_{0} be min s.t. $p^{m_{0}} f$ has constant terms of q-expansions on unramified cusps in $W\left(\mathbb{F}_{w}\right)$
Let $g \in S\left(W\left(\mathbb{F}_{\gamma}\right), 1, n, k\right)$ be defined as $g\left(E, \omega, a_{n}, y=E_{p}^{-1}\right)=p^{m_{0}} f\left(E, \omega, a_{n}, H\right)$
Since m_{0} is minimal, g has a q-expansion with constant term a unit u in $W\left(\mathbb{F}_{v}\right)$. $u^{-1} g$ han q expansion $1+p^{m_{0}} \sum_{i \geqslant 1} a_{i} q^{i}$. Mod $p^{m_{0}}, u^{-1} g$ has q-expansion 1. By $(6) \Rightarrow(1), \quad k \equiv 0 \bmod p^{m_{0}-1}(p-1)$
§5. MODULAR FORMS OF WEIGHT x

Let $x \in \operatorname{End}\left(\mathbb{Z}_{p}^{x}\right) \cong \lim \operatorname{Gnd}\left(\mathbb{Z} / p^{m} z\right)^{x} \cong \lim _{\leftarrow} \mathbb{Z} / \varphi\left(p^{m}\right) \mathbb{Z}$

Consider $\rho: \pi_{1}\left(\bar{S}_{m}^{S}\right) \longrightarrow$ Put $\left(\left(\text { ger } \bar{\pi}_{m}\right)_{T}\right) \cong\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{x}$ corresponding to $(\underline{\omega}, \varphi)$ ρ are compatible as m varies, \& $:$ so are $x \circ \rho$

Denote by $\left(\underline{\omega}^{x}, \varphi\right)$, the invertible sheaf corresponding to $x \cdot \rho$. These are compatible as m varies.

Definition: A p-adic modular form of weight x and level n, holomorphic at ∞, is a compatible family of global sections of $\underline{\omega}^{x}$ as m varies.

Remark 1: If $x=k \in \mathbb{Z} \subset$ End $\left(\mathbb{Z}_{p}^{x}\right)$, we recover $S\left(W\left(\mathbb{F}_{q}\right), 1, n, k\right)$,

$$
\hookrightarrow \Leftrightarrow x_{\circ} \cong \cong \rho^{\circ k}
$$

Remark 2: For any $x,\left(\omega^{x}, \varphi\right)$ on \bar{S}_{m}^{3} is isomorphic to ($\underline{\omega}^{\otimes k m}, \varphi$) for any $k_{m} \in \mathbb{Z}$ s.t. $k_{m} \equiv X \bmod \varphi\left(P^{m}\right)$
Note: Suppose $k_{m} \equiv k_{m}^{\prime} \equiv X$, then the ism between (ω (k_{m}, Q) \& $\left(\omega \otimes R_{m}^{\prime \prime}, \varphi\right)$ is given by multiplication by $\mp_{p-1}^{\left(k_{m}^{\prime}-k_{m}\right) / p-1}$. This leaves q-expansions invariant $\bmod p^{m}$, \& so we get a well defined \& unique q-expansion of a p-adic modular form of wo x.

THEOREM:

1) Let $x \in E_{n d}\left(\mathbb{Z}_{p}^{x}\right)$, \& f be a modular form of weight x \& level n, holomorphic at ∞, defined over $W\left(\mathbb{F}_{q}\right)$. Then $\exists a$ sequence of integers $0 \leq k_{1} \leq k_{2} \leq k_{3} \leq \ldots$ sit.

$$
k_{m} \equiv x \quad \bmod \quad Q\left(p^{m}\right)
$$

and a sequence of true modular forms f_{i} of weight k_{i} \& level n, holomorphic at ∞ s.t.

$$
f_{m} \equiv f \bmod p^{m} \text { in } q \text {-expansion }
$$

2) Conversely, let $\left\{k_{m}\right\}_{m \geqslant 1}$ be an arbitrary sequence of integers, and suppose given a sequence $f_{m} \in S\left(W\left(\mathbb{F}_{q}\right), 1, n, k_{m}\right)$ of p-adic modular forms of weights k_{i} set.
$f_{m+1} \equiv f_{m} \bmod p^{m}$ in q-expansion at each cusp 3 m st. $f_{m} \neq 0 \quad \bmod p^{m}$ in $q-$ expansion
Then the sequence of weights k_{m} converges to $x \in \operatorname{End}\left(\mathbb{Z}_{p}^{x}\right)$ \& 3 ! modular form $f=\lim f_{m}$ of wt x \& level n, hob at ∞, st.

$$
f_{m} \equiv f \quad \bmod p^{m} \quad \text { in } q \text { expansion }
$$

Outline of pf:

1) Prom definition.
2) - Multiply f_{m} by high powers of $E_{p-1}^{p m-1}$ to get the weights in increasing order \& positive

- Consider the limit q-expansion. 3 max m_{0} st. $p^{m_{0}}$ divides the q-expansion.

Then $f_{m}=p^{m_{0}} g_{m}$ for $m>m_{0}$ where g_{m} is a wt k_{m} p-adic modular form w/ q- expansions $\not \geqslant 0 \bmod p$, of

- Using the sequence $\left\{g_{m+m_{0}}\right\}$ we get a congruence relation on weights \& they converge to x.
- $p^{m 0} g_{m+m_{0}} \bmod p^{m}$ dyne a \bar{s}^{3} compatible family of sections of $\underline{\omega}^{x}$ on \bar{S}_{m}^{3}

COROLLARY:
Let $x \in$ End z_{p}^{x}. Let $0 \leq k_{1} \leq k_{2} \leq \cdots$ be a sequence of integers sit. $k_{m} \equiv X \bmod \varphi(p m)$
Let f_{m} be a sequence of true modular forms of weight k_{m} \& level n on $\Gamma_{0}(p)$, hot at the unramified cusps \& defined over Frac $W\left(\mathbb{F}_{q}\right)=K$.

Suppose the non constant terms of all the q expansions of f_{m} are in $W\left(\mathbb{F}_{q}\right)$ \& at each cusp

$$
f_{m+1}(q)-f_{m+1}(0) \equiv f_{m}(q)-f_{m}(0) \bmod p^{m}
$$

Then:

1) if $x \neq 0$, let m_{0} be the largest integer $s-t \cdot x \equiv 0$ mod $\varphi\left(p^{m_{0}}\right)$. Then for $m \geqslant m_{0}$, $p^{m_{0}} f_{m}$ has integral q-expansions.
2) Further, at each cusp, we have the congruence on constant terms : $p^{m_{0}} f_{m+1}(0) \equiv p^{m_{0}} f_{m}(0) \bmod p^{m-m_{0}}$ for all $m>m_{0}$.

Pf: 1) is as before
2) Let $\quad h_{m}:=p^{m_{0}} f_{m+1}-p^{m_{0}} f_{m} \underbrace{\left(k_{m+1}-k_{m}\right) / p-1}_{\substack{\hat{\jmath} \\ p_{p-1}}}$ up f_{m} to get the same weight as f_{m+1}
$\bmod p^{m}, \quad h_{m}(q) \equiv h_{m}(0)$
$\frac{h_{m}}{p_{m}}$ is a modular form of weight k_{m} with nonconstant q-expansion coefficients in $W\left(F_{q}\right)$. As before $p^{m_{0}}$ gives a bound on the denominator $\Rightarrow \quad p^{m-m_{0}} \mid \mathrm{hm}$

$$
\Rightarrow \quad p^{m_{0}} f_{m+1}(0) \equiv p^{m_{0}} f(0) \bmod p^{m^{m}-m_{0}}
$$

EXAMPLE:
Take $f_{m}=G_{k_{m}}$ with q-expansion given by $-\frac{b_{k_{m}}}{2 k_{m}}+\sum_{n \geqslant 1} \sigma_{k_{m}-1}(n) q^{n}$

Choose k_{m} to be strictly increasing with m (forces $k_{m}-1 \geqslant m$) s.t. they converge to a desired x

Claim: $f_{m+1}(q)-f_{m+1}(0) \equiv f_{m}(q)-f_{m}(0) \bmod p^{m}$
Pf:
coff of q^{n} in LHS - RHS is:

$$
\begin{aligned}
& \begin{aligned}
& \sum_{d \mid n}\left(d^{k_{m+1}-1}-d^{k_{m}-1}\right)+\sum_{\substack{d(n \\
(d, p) \neq 1}}(\underbrace{\left.p^{k_{m+1}-1}\left(\frac{d}{p}\right)^{k_{m+1}-1}-p^{k_{m}-1}\left(\frac{d}{p}\right)^{k_{m}-1}\right)} \\
&=\underbrace{d_{m-1}\left(d^{k_{m+1}-k_{m}}-1\right)})
\end{aligned} \\
& \equiv 0 \quad \bmod p^{m} \quad \equiv 0 \quad \bmod p^{m} \\
& d \text { is a unit } \bmod p^{m} \& \\
& k_{m+1} \equiv k_{m} \quad \bmod \quad a\left(\rho^{m}\right)
\end{aligned}
$$

\therefore By the result earlier, $\lim _{x} p^{m_{0}} f_{m} \stackrel{\text { duet }}{=} p^{m_{0}} G_{x}^{*}$ is a modular form of wt x. The nonconstant pact of the q-expansion is given by $\sum_{n=1}^{u_{1} a_{n} q^{n}, \text { where }}$

$$
\begin{aligned}
a_{n} & =p^{m 0} \lim _{m}\left(\sum_{\substack{d \mid n \\
(d, p)=1}} d^{k_{m}-1}+\sum_{\substack{d \mid n \\
(d, p)=1}} p^{k_{m}-1} \cdot\left(\frac{d}{p}\right)^{k_{m}-1} \bmod p^{m}\right) \\
& =p^{m=} \lim _{m} \sum_{\substack{d \mid n \\
(d, p)=1}} \frac{d^{k_{m}}}{d}=p^{m 0} \sum_{\substack{d \mid n}}=\frac{x(d)}{d}
\end{aligned}
$$

\therefore " G_{x}^{*} " has q-expansion with \cos of $q^{n}=\sum_{\substack{d / n \\(d, p)=1}} \frac{x(d)}{d}$

Note that even if x is an even positive integer $2 k \geqslant 4$, $C_{i x}^{*} \neq G_{2 k}$. In particular, the coff of q^{n} for the latter

$$
\sum_{d \mid n} d^{2 k-1}=\sum_{d \mid n} \frac{x(d)}{d} \sum_{\uparrow} \neq \sum_{d \mid n} \frac{x(d)}{d} \leftarrow
$$

