Part 1: Hecke operators

OUTLINE:

1) Heck operators are double coset op.
2) Double coset $o p$ induce multivalued frs called correspondences
3) Correspondences induce maps on cohomologis

Double coset operators: Let $\alpha \in G L_{2}(\mathbb{Q})^{+}$ $\Gamma_{1}, \Gamma_{2} \subset S L_{2}(\mathbb{T})$ be congruence subgps. $\left[\Gamma_{1} \propto \Gamma_{2}\right]_{k}$ is an operator mapping $M_{k}\left(\Gamma_{2}\right)$ to $M_{k}\left(\Gamma_{1}\right)$, defined as follows:

$$
f\left[\Gamma_{1} \alpha \Gamma_{2}\right]_{k} \quad:=\sum f[\beta j]_{k}
$$

where 1) β_{j} vary over coset reps of

$$
\Gamma_{1} \Gamma_{1} \propto \Gamma_{2}
$$

2) $\quad f\left[\beta_{j}\right]_{k}(\tau):=\left(\operatorname{det} \beta_{j}\right)^{k-1}\left(\frac{1}{c \tau+d}\right)^{k} f\left(\beta_{j} \tau\right)$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Example : Let $\alpha=\left[\begin{array}{ll}1 & 0 \\ 0 & p\end{array}\right] \quad \Gamma_{1}=\Gamma_{2}=\Gamma_{0}(N) \quad\left[\begin{array}{ll}n & * \\ 0 & k\end{array}\right] \bmod$
$P \not P N$. Then $\left\{\left[\begin{array}{cc}1 & j \\ 0 & p\end{array}\right],\left[\begin{array}{ll}(0, p-1) \\ \omega j\end{array}\right]\left[\begin{array}{cc}p & 0 \\ 0 & 1\end{array}\right]\right\}$
give coset reps of $\Gamma_{0}(N) \backslash \Gamma_{0}(N) \propto \Gamma_{0}(N)$

$$
\begin{aligned}
\mathbb{Z}\left\langle\beta_{j} \tau, 1\right\rangle= & \frac{1}{p} \underbrace{\mathbb{Z}\langle\tau \text { sublattius }}_{\Lambda_{j}\langle\tau+j, p\rangle} \\
\mathbb{Z}\left\langle\beta_{\infty} \tau, 1\right\rangle= & \mathbb{Z}\langle p \tau, 1\rangle=\Lambda_{\infty} \text { of index }_{p} \\
& \cdot f\left[\beta_{j}\right]_{k}(\tau)=p^{k-1}\left(p^{-k} f\left(\beta_{j} \tau\right)\right)
\end{aligned}
$$

Λ_{j} corresponds to ($E_{\beta i \tau}, P \omega$)

$$
\begin{aligned}
\therefore f\left(\Lambda_{j}\right) & =f\left(E_{\beta_{j} \tau}, p \omega\right) \\
& =p^{-k} f\left(\beta_{j \tau}, \omega\right) \\
\therefore \quad f\left[\beta_{j}\right]_{k}(\tau) & =p^{k-1} f\left(\Lambda^{\prime}\right)
\end{aligned}
$$

$$
\therefore\left[\Gamma_{0}(N) \propto \Gamma_{0}(N)\right]_{k}=\left.\quad T_{p}\right|_{M_{k}\left(\Gamma_{0}(N)\right)}
$$

$\left(\begin{array}{c}T_{p},\langle d\rangle \text { are double coset } \\ \text { operators }\end{array}\right.$

Another way to think of $\left[\Gamma_{1} \propto \Gamma_{2}\right]_{k}$:
Ia bisection of coset reps:

$$
\Gamma_{3}=\alpha^{-1} \Gamma_{1} \alpha \cap \Gamma_{2} \Gamma_{2} \quad \rightarrow \quad \Gamma_{1} \Gamma^{\Gamma_{1} \alpha \Gamma_{2}}
$$

Let G be a group and let S be a subgroup. To avoid superscripts we use the
following notation. Let $\gamma \in G$. We write

$$
\left\lfloor\gamma \mid S=\gamma S \gamma^{-1} \text { and } S[\gamma]=\gamma^{-1} S \gamma .\right.
$$

We shall suppose that S has finite index. We let H be
verified that G is a disjoint union of double costs. We let $\{\gamma\}$ be a family of
For each γ we have a $\quad G=\bigcup_{\gamma} H \gamma S$.
For each γ we have a decomposition into ordinary coset

$$
H=\bigcup_{\tau_{\gamma}} \tau_{\gamma}(H \cap[\gamma] S) .
$$

where $\left\{\tau_{\gamma}\right\}$ is a finite family of elements of H, depending on γ.
Lemma 7.5. The elements $\left\{\tau_{\gamma} \gamma\right\}$ form a family of left coset representatives
for S in G; that is, we have a disjoint union

$$
G=\bigcup_{\gamma, \tau_{\gamma}} \tau_{\gamma} \gamma S \text {. }
$$

$$
\begin{array}{cc}
\Gamma_{3} \longrightarrow \sim \Gamma_{3} \alpha^{-1}=\Gamma_{1} \cap \alpha \Gamma_{2} \alpha^{-1} \\
\int^{\sim} \Gamma_{3}^{\prime} \\
\Gamma_{2} & \int_{1} \\
& \Gamma_{1}
\end{array}
$$

We have :

$$
\text { where }{ }^{1} \beta_{j} \text { vary ones cost reps of }
$$

We also have a homomorphism of divisors:

$$
\begin{aligned}
& \text { mappiry } M_{k}\left(\Gamma_{2}\right) \text { to } M_{k}\left(T_{1}\right) \text {, dyymed as } \\
& \text { follows: } f\left[\Gamma_{1} \Gamma_{2}\right]_{k}:=\sum f[\beta \dot{ }=]_{k}
\end{aligned}
$$

let X_{i} be $\quad \Gamma_{i} \backslash H^{*}$

$$
\sum_{j}\left[\Gamma_{3} \gamma_{2, j} \tau\right] \rightarrow \sum_{j}\left[\Gamma_{3}^{\prime} \alpha \gamma_{2, j} \tau\right]
$$

dyne of
-by dey 1
the map
\uparrow pullback
\downarrow pushforward
$\left[\Gamma_{3} \tau\right]$

$$
\sum\left[\Gamma_{3}^{\prime} \alpha \gamma_{2, j} \tau\right]
$$

So, Heck operator may be viewed as a "correspondence"

inducing a multivalued f_{n} on points \& a single valued for on divisors by summing. over.

We have an induced map:

$$
H^{0}\left(X_{1}, \Omega^{1}\right) \xrightarrow{u_{0} v^{*}} \quad H^{0}\left(X_{2}, \Omega^{\prime}\right)
$$

Aside: pushfwd along works approximately the following way:]

$$
\begin{array}{ll}
\tilde{u}=v u_{i} & \omega \\
L^{w}, i^{\prime} h_{i, a}^{-1}, a & I \\
u \quad \text { localinvese } & \left.\sum\left(h_{i}^{-1}\right)^{+} \omega\right|_{u_{i}}
\end{array}
$$

Worry about ramification pts \& glueing

Note that: $S_{2}\left(\Gamma_{i}\right) \cong \Omega_{\text {hoe }}^{1}\left(X_{i}\right)$
Fact: The above map agrees with the map induced on $S_{2}\left(\Gamma_{i}\right)$ by the action of $\left[\Gamma_{1} \propto \Gamma_{2}\right]$ on modular forms of wt 2

Somehow this map on cohomology is supposed to generalize the same way although I don't know how puohforwards work generally.

Part 2 : Cohomology of locally symmetric spaces

In what follows, all manifolds are C^{∞}

$$
\begin{aligned}
& L=\mathbb{R} \text { on } \mathbb{C} \\
& E \text { f.d.v.s./L }
\end{aligned}
$$

$C^{\infty}(M ; E)$: Space of smooth fro $w /$ values in E
$A^{q}(M ; E)$: Space of smooth sections of the tensor product bundle

$$
\begin{aligned}
& \Lambda^{q} T^{*}(M) \otimes(\underbrace{(M \times E)}_{\text {mivial }} \\
& \underset{\substack{\text { mo } f \cdot d .}}{\cong} \Omega^{q} T^{*}(M) \otimes_{\mathbb{R}} E
\end{aligned}
$$

Let a be a lie gp $w /$ finitely many connected components,
K, a maximal compact subgroup.

$$
x=\quad G / k
$$

$\Gamma=$ a discrete, torsion gre subgp of $G(\therefore$ free action on G / k)
(ρ, E) a $f \cdot d$ real on complex rep of Γ

Fact: X is homeomophic to Euclidean space

Further $\Gamma \backslash X$ is a locally symmetric space
(ie. Riemannian manifold st. each x has a nobs $U \&$ a deffer s_{x} of U that is an isometry inverting tangent vectors at x)
outline : 1) relationship b/w cohomology of Γ, cohomology of $\Gamma \backslash X$ \& relative tie algebra cohomology
2) Decomposition of cohomology when Γ is co-compact $\& \quad E$ is unitary $r-\bmod$

- E is a $G-\bmod$

Theorem:
$H^{*}(\Gamma, E)$ is canonically isom to

$$
H^{*}\left(A(X, E)^{r}\right)
$$

Sketch of pf
$\Gamma \backslash X$ is a smooth manfold, X is contractible

Thes is supposed to umply

Cohomology of $A\left(\Gamma \backslash x_{;} \tilde{E}\right) \cong$ $H^{*}(\Gamma \backslash x ; \tilde{E})$ by some application of de Rham's Thm.

Let $I^{\infty}(E)=C^{\infty}(G, E)^{\Gamma}$

$$
\left\{f \in C^{\infty}(G, E): \quad \stackrel{\swarrow}{f(r \cdot g)}=\rho(r) \cdot f(g)\right\}
$$

(This is precisely the induced rep in the C^{∞} sense \& G-action is given by $r t$-trandation

$$
(g \cdot f)(\xi)=f(\xi q)
$$

$$
A^{q}(G ; E)=\operatorname{Hom}\left(\Lambda^{q} q, C^{\infty}(G ; E)\right)
$$

Let $\omega \in A^{\alpha}(G ; E)^{r}$

$$
\begin{aligned}
& \Leftrightarrow \quad \omega(\underbrace{\gamma \cdot g}, \vec{y}) \in \Lambda^{\alpha} \text { of } \\
& \begin{array}{l}
\text { position } \\
\text { ev.at }
\end{array} \\
& =\rho(\gamma) \cdot \omega(g, y) \\
& \omega(-, Y) \in I^{\infty}(E) \\
& \therefore \omega \in \operatorname{Hom}\left(\Lambda^{\alpha} \text { of , } I^{\infty}(E)\right)
\end{aligned}
$$

Clearly, the converse holds as nell. and

$$
l: A^{\alpha}(G ; E)^{r} \cong \operatorname{Hom}\left(\Lambda^{q} \text { of } ; I^{\infty}(E)\right)
$$

PROPOSITION:
Let $\pi: G \rightarrow G / K$ be the canonical projection. \exists an som of graded complexes:

$$
\begin{aligned}
& A^{*}(X ; E)^{\Gamma} \longrightarrow \operatorname{Hom}_{k}\left(\Lambda^{\mu} \text { of/R } / R ; I^{\infty}(E)\right) \\
& \underbrace{\iota(\omega \circ \pi)}_{\substack{\omega \circ \pi \\
\pi}} \\
& A^{*}(G ; E)^{\Gamma} \\
& \therefore \quad H^{*}(\Gamma ; E) \cong H^{*}\left(G, K ; I^{\infty}(E)\right)
\end{aligned}
$$

(Here, K acts on \wedge^{*} of /R via adjt rep \& on $I^{\infty}(E)$ via of translation)
$\int \omega 0 \pi$ is Γ-invariant as ω is.
$c(\omega, \pi)$ is K-invariant under $r t$ translation \& is annihilated by interior products \dot{u}_{x} foo $x \in R$ as $\quad x$ proves forward to the 0 vector field. Err...
$\Gamma \quad$ CO-COMPACT
E UNITARY Γ-module

$$
L=\mathbb{C}
$$

Γ co-compact $\Rightarrow G$ is nee. unimodular
$\Rightarrow \Gamma \backslash G$ has a unique rt G invariant Radon measure, nonzero an non-empty open sets.

If $u, v \in I^{\infty}(E)$
Then $(u(r \cdot x), v(r \cdot x))_{E}={ }^{I^{\infty}(E) \text { durintion }}(r \cdot u(x), \gamma \cdot v(x))_{E}$
$\underset{\substack{\boldsymbol{j} \\ \text { unitary }}}{=}(u(x), v(x))_{E}$
\therefore this is a fou on $\Gamma \backslash G \&$ we can define a global scalar product by integrating over $\Gamma \backslash G$. Let $I_{2}(E)$ be
meaomable
$\because x \mapsto u(x), v(x)$

so cont. the completion of $I^{\infty}(E)$ under this

Scalar product.
certainly finite norm: means on Γ^{9} can be realized by integrations over a pet fund-domain, where $f \in I^{\infty}(E)$ is bad.
$I^{2}(E)$ is a unitary G-mod w.r.t. right translations

Apparently $\quad\left(I^{2}(E)\right)^{\infty}=I^{\infty}(E)$
r is a smooth vec $\Leftrightarrow g \mapsto \pi(g) r$ is smooth

By some the of Gelfand \& Piatetski-Shapiro

$$
\begin{aligned}
I^{2}(E) & =\hat{\oplus}_{\substack{\pi \text { irred } \\
G \cdot \text { rep }}}^{m(\underbrace{(\pi, \Gamma, E)}_{\in \mathbb{N}} H_{\pi}} \\
\Rightarrow \quad I^{\infty}(E) & =\left(I^{2}(E)\right)^{\infty}=\left(\hat{\bigoplus}_{\pi \in G \text { irrep }} m(\pi, r, E) H_{\pi}\right)^{\infty}
\end{aligned}
$$

Theorem: $H^{*}(\Gamma, E) \cong \bigoplus_{\pi \in G \text { irrep }} m(\pi, \Gamma, E) H^{*}\left(g, K ; H_{\pi}^{\infty}\right)$ This sum is finite. 9 think may ic

- The natural hor $j^{*}: H^{*}\left(\right.$ of, $\left.K ; E^{\top}\right) \longrightarrow$ $H^{*}\left(o f, K ; I^{\infty}(E)\right)^{H^{*}(\Gamma, E)}$ induced by $E^{r} \leadsto I^{\infty}(E)^{G}$ $e \mapsto(g \mapsto e)$ is infective. substituted by $\mathrm{H}_{\mathrm{T}, \mathrm{O}} \mathrm{O}$, the space of K-finite vectors as image Nog/R io pumps mere. Contained in $\mathrm{H}_{\mathrm{m}, \mathrm{O}}$. what if smooth ines?

Sketch of proof:

$$
\begin{aligned}
& \text { of proof: }{\underset{r}{p p p} 2 \text { pages apo }}^{2} H^{*}\left(\text { of, } K ; I^{\infty}(E)\right) \\
& H^{*}(\Gamma ; E)=H^{*}\left(G, K ;\left(\hat{\oplus} m(\pi, T, E) H_{\pi}\right)^{\infty}\right)
\end{aligned}
$$

Let $S \subset$ Girep be finite.

Let $C_{S}^{*}=\bigoplus_{\pi \in S} \operatorname{Hom}_{k}\left(\Lambda^{*} \sigma / R, m(\pi, \Gamma, E) H_{\pi}^{\infty}\right)$

$$
C_{S^{\prime}}^{*}=\operatorname{Hom}_{k}\left(\Lambda^{*} \text { of } / R ;\left(\hat{\pi}_{\pi \in S^{c}} m_{\pi} H_{\pi}\right)^{\infty}\right)
$$

Then $H^{*}\left(r_{;} E\right)=\bigoplus_{\pi \in S} m_{\pi} H^{*}\left(\sigma, K ; H_{\pi}^{\infty}\right)$

$$
\oplus \quad H^{+}\left(C_{s^{\prime}}^{*}\right)
$$

$$
H^{*}(\Gamma ; E)=H^{*}(\underbrace{\Gamma}_{\text {copt }}, \tilde{E})
$$

This is supposed to imply $\operatorname{dim} H^{*}(\Gamma ; E)<\infty$
$\therefore \exists$ exists a finite set $S C G$ irene s.t. H^{*} for $\pi \notin S$ is 0 . We now want to show that $H^{*}\left(C_{S^{\prime}}^{*}\right)=0$
Γ - co compact
E- G-Module

Assume (ρ, E) is the restriction to T of a rep of G.

Consider the map $C^{\infty}(G, E) \rightarrow C^{\infty}(G, E)$

$$
f \quad \mapsto \quad\left(g \stackrel{F}{\mapsto} \rho\left(g^{-1}\right) f(g)\right)
$$

If f is Γ invariant, then F is defined in $\Gamma \backslash G$

This guvs us:

$$
\begin{aligned}
& I^{\infty}(E) \xrightarrow[\sim]{G-\bmod } C^{\infty}(\Gamma \backslash G ; L) \quad \stackrel{\downarrow}{\otimes},{ }_{L} E \\
& (g \mapsto f(g) F(g)) \stackrel{\longmapsto}{\rightleftarrows} \stackrel{F}{ }
\end{aligned}
$$

If (ρ, E) comes flown a rep of G, we have

$$
H^{\alpha}\left(A^{*}(G ; E)^{n}\right) \cong H^{*}\left(\circ ; \quad C^{\infty}(\Gamma \backslash G, L) \otimes E\right)
$$

Similar to before, we have

$$
\begin{aligned}
L^{2}(\Gamma \backslash G) & =\hat{\bigoplus} m(\pi, \Gamma) H_{\pi} \\
C^{\infty}(\Gamma \backslash G) & =\left(L^{2}(\Gamma \backslash G)\right)^{\infty} \\
I^{\infty}(E) & \cong\left(\hat{\oplus}_{\pi \in G \text { imp }}^{\hat{m}} H_{\pi}\right)^{\infty} \otimes E
\end{aligned}
$$

Theorem:

$$
H^{+}(\Gamma ; E)=\oplus m_{\pi} H^{*}\left(\sigma, K ; H_{\pi}^{\infty} \otimes E\right)
$$

The natural homomorphism $j^{*}: H^{3}(o f, K ; E)$

$$
\longrightarrow \quad H^{*}\left(O, K ; C^{\infty}(T \backslash G ; L) \otimes E\right)=H^{*}(\Gamma ; E)
$$

(induced by identification of $E w /$ the space of is injective. Its image is the contribution of the trivial rep of G.

