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Abstract. Let K be a finite unramified extension of Qp with p > 3. We study

the extremely non–generic irreducible components in the reduced part of the
Emerton–Gee stack for GL2. We show precisely which irreducible components

are smooth, which are normal, and which have Gorenstein normalizations. We

show that the normalizations of the irreducible components admit smooth–local
covers by resolution–rational schemes. We also determine the singular loci

on the components, and use our results to update expectations about the
conjectural categorical p–adic Langlands correspondence.

1. Introduction

Let p be a fixed prime. Let K be a finite extension of Qp with residue field k of
degree f over Fp, and absolute Galois group GK . In [EG], Emerton and Gee studied
the stack Xd of étale (φ,Γ)–modules of rank d defined over the formal spectrum
of the ring of integers of a large finite extension of Qp with residue field F. As
discussed in [EGH], Xd is expected to play the role of the stack of L–parameters in
the so far conjectural categorical p–adic Langlands correspondence for GLd(K).

By [EG, Thm. 1.2.1], Xd is a Noetherian formal algebraic stack and its underlying
reduced substack Xd,red is an algebraic stack of finite type over F. The irreducible
components of Xd,red admit a natural labelling by Serre weights, which are the
irreducible representations of GLd(k) with coefficients in F. Each Serre weight
for GL2(k) is described by (ordered) pairs of f–tuples of integers m = (mj)j and
n = (nj)j with nj ∈ [0, p− 1] for each j, and is correspondingly denoted σm,n (see
Section 2.4 for details). We say that σm,n is non–Steinberg if nj < p− 1 for some j.
Let X (σm,n) be the irreducible component of X2,red labelled by σm,n. The following
is our main theorem, upgrading the main result of [GKKSW].

Theorem 1.1 (Theorem 5.5). Let p > 3, K unramified over Qp of degree f , and
σm,n a non–Steinberg Serre weight. Then the following are true:

(i) The component X (σm,n) is not smooth if and only if either
(a) nj = p− 2 for each j ∈ Z/fZ, or
(b) there exists a subset {i− k, . . . , i} ⊂ Z/fZ with ni−k = 0, nj = p− 2

whenever j ∈ {i− k, . . . , i}∖ {i− k, i}, and ni = p− 1.
(ii) If (a) holds, X (σm,n) is not normal and its normalization admits a smooth–

local cover by a Cohen–Macaulay and resolution–rational scheme (c.f. [Kov,
Defn. 9.1]) that is not Gorenstein. The non–normal locus on X (σ) has
codimension f and its complement is smooth.

(iii) If (b) holds, X (σm,n) is normal and admits a smooth–local cover by a Cohen–
Macaulay and resolution–rational scheme. It is additionally Gorenstein,
even lci, if and only if every subset {i − k, . . . , i} ⊂ Z/fZ as in (b) has
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cardinality 2. The singular locus on X (σ) has codimension ≥ 2 and its
complement is smooth.

Taking F to be an algebraic closure of F, Xd(F) = Xd,red(F) is the groupoid of

continuous two–dimensional representations of GK with coefficients in F. A study
of the singular loci in the irreducible components of X2,red allows us to obtain the
following two theorems, which can be viewed as partial generalizations of [San,
Thm. 1].

Theorem 1.2 (Theorem 5.9). Let p > 3, K unramified over Qp, and σm,n a

non–Steinberg Serre weight. The versal ring at ρ ∈ X (σm,n)(F) is not normal if
and only if nj = p− 2 for each j and, as a GK–representation, ρ is of the form ∏

j∈Z/fZ

ω
(mj−1)
j

⊗
(
urλ′ ∗
0 urλ′′

)
where λ′ and λ′′ are arbitrary units in F, and

• ∗ is the vanishing class if λ′ ̸= λ′′, and
• ∗ lies in the 1–dimensional space of extension classes that vanish after
restriction to the inertia subgroup if λ′ = λ′′.

Theorem 1.3 (Theorem 5.10). Let p > 3, K unramified over Qp, and σm,n a non–
Steinberg Serre weight. Suppose there exists i ∈ Z/fZ such that ni+1 = 0, ni = p−1,
and nj = p− 2 for j ∈ Z/fZ∖ {i, i+ 1}. The versal ring at ρ ∈ X (σm,n)(F) is not
smooth if and only if as a GK–representation, ρ is of the formω

mi+1

i+1 ⊗
∏

j ̸=i+1

ω
mj−1
j

⊗
(
urλ′ ∗
0 urλ′′

)
where λ′ and λ′′ are arbitrary units in F, and

• ∗ is vanishing if λ′ ̸= λ′′, and
• ∗ lies in the 1–dimensional space of extension classes that vanish after
restriction to the inertia subgroup if λ′ = λ′′.

In this case, the versal ring is normal and Cohen–Macaulay. It is Gorenstein, even
lci, if and only if f = 2.

Here, {ωj}j are choices of GK–characters extending the f distinct niveau 1
fundamental characters of the inertia subgroup (see Section 2 for details), while urλ′

and urλ′′ are the unramified characters mapping the geometric Frobenius to λ′ and
λ′′ respectively. Note that the hypothesis in the statement of Theorem 1.3 does not
encapsulate all normal but non–smooth components unless f = 2.

1.1. Categorical p–adic Langlands. In [EGH, Conj. 6.1.14], Emerton, Gee and
Hellmann conjecture the existence of an exact fully faithful functor A from a certain
derived category of so–called smooth representations of GLd(K) to a certain derived
category of quasicoherent sheaves on Xd, satisfying various properties. Without
going into the details of what the appropriate categories are and the properties A is
expected to satisfy, we focus attention on a few consequences of their conjecture
laid out in Sections 6 and 7 of loc. cit., restricting to the case d = 2. Let σm,n be a
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non–Steinberg Serre weight viewed as a representation of GL2(OK) via inflation,
where OK is the ring of integers of K. Let L(σm,n) denote the conjectural sheaf

A
(
c-Ind

GL2(K)
GL2(OK)σm,n

)
.

Some of the expectations about L(σm,n) are as follows:

(1) It is a coherent sheaf concentrated in degree 0 by [EGH, Rmk. 6.1.26] and
maximal Cohen–Macaulay on its support X (σm,n). The latter essentially
follows from exactness of A and Cohen–Macaulay nature of sheaves as-
sociated to locally algebraic types (see [EGH, Rmk. 6.1.34]), along with
compatibility with geometric Breuil–Mézard conjecture.

(2) Ignoring possible shifts of complexes, L(σm,n) is Grothendieck–Serre self–
dual by [EGH, Rmk. 6.1.35]. Thus, when K is an unramified non–trivial
extension of Qp, our Theorem 1.1 and Lemma 5.8 together imply that
L(σm,n) is the pushforward of a self–dual maximal Cohen–Macaulay sheaf
on the normalization of X (σm,n).

(3) When K is an unramified non–trivial extension of Qp and p > 5, L(σm,n)
has rank 1 generically on X (σm,n). This follows from combining the data on
codimension of non–normal locus in potentially Barsotti–Tate deformation
rings given in the proof of [LHMM, Thm. 4.6.10], conjecture about the
rank of the generic fiber of sheaves corresponding to locally algebraic types
in [EGH, Rmk. 6.1.34], and compatibility with geometric Breuil–Mézard
conjecture. The key point is that one can always find a non–scalar tame
inertial type τ such that σm,n appears in the Jordan–Holder decomposition
of the GL2(OK)–representation associated to τ by inertial local Langlands,
and such that the potentially Barsotti–Tate deformation rings of type τ are
regular in codimension 1.

Motivated by these expectations, we obtain the following theorem, wherein the
first part is a corollary of the statement about codimension of singular locus in
Theorem 1.1.

Theorem 1.4 (Theorem 5.6). Let p > 3, K an unramified non–trivial extension of
Qp, and σm,n a non–Steinberg Serre weight. Let ι : U ↪→ X (σm,n) be the smooth
open locus in X (σm,n). Suppose F is a finite type maximal Cohen–Macaulay sheaf
on X (σm,n) generically of rank 1. The following are true:

(i) The sheaf F is isomorphic to the pushforward along ι of the invertible sheaf
ι∗F on U .

(ii) If there does not exist i such that (ni−1, ni) = (0, p − 1), then F is the
pushforward of a unique invertible sheaf on a smooth algebraic stack of
Breuil–Kisin modules admitting a proper, birational map onto X (σm,n).

In the setup of Theorem 1.4 above and assuming a reasonable notion of a dualizing
complex on an algebraic stack, note that if F is (Grothendieck–Serre) self–dual,
then so is ι∗F . As we will see later in the proof, U is isomorphic to its preimage in
the aforementioned stack of Breuil–Kisin modules. If the hypothesis in (ii) holds,
then the codimension of the complement of the preimage of U turns out to be ≥ 2.
Thus, by an argument involving the algebraic Hartog’s Lemma on the dual of a line
bundle on a smooth variety, F is seen to be the (non–derived) pushforward of a
self–dual invertible sheaf on the stack of Breuil–Kisin modules we are considering.
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When p > 5, we therefore expect that one can uniquely characterize L(σm,n)
for all non–Steinberg σm,n as the pushforward of the unique self–dual invertible
sheaf on U (equivalently, on an appropriate stack of Breuil–Kisin modules when the
hypothesis in (ii) holds), and indeed use this characterization as a key ingredient
towards constructing A (c.f. [EGH, Sec. 7.6.10]).

1.2. Strategy and outline. We begin in Section 2 by setting up some standard
notation and definitions. In Section 3, we review many of the constructions from
[LHMM] that we use essentially. These constructions pertain to smooth–local charts
on various closed substacks of X2,red, as well as explicit auxiliary schemes through
which maps from certain stacks of Breuil–Kisin modules to X2,red factor locally in the
smooth topology. The constraints on p and the requirement for K to be unramified
over Qp appear in this section, most critically in the proof of Proposition 3.7. We
use the results of [BBH+] to impose “shape” conditions that cut out irreducible
components in these charts, thus setting up smooth–local charts for the irreducible
components of X2,red.

In Section 4, we undertake a detailed study of the geometry of these charts.
We start off by analyzing the additional relations on the auxiliary schemes that
come from imposing shape conditions. Next, in Section 4.2, we make the crucial
observation that the charts for the irreducible components of X2,red can be written
as (typically non–trivial) products of varieties, with each factor in the product
somewhat easier to study. Each factor admits a resolution of singularities by a
smooth scheme, and we determine the locus where this resolution fails to be an
isomorphism. The key argument is in Lemma 4.8. Next, by doing factor–wise
computations, we obtain the cohomologies of the dualizing complex for the charts
following the approach in [LHMM], which reduces the computations to those for
the auxiliary schemes and Koszul resolutions. We also compute lower bounds on
the ranks of these cohomology groups at the loci where the irreducible components
of X2,red fail to be isomorphic to their resolutions of singularities. This allows us to
infer that these loci are precisely the singular loci.

Finally, we prove Theorems 5.5 and 5.6 in Section 5 by doing various combinatorial
calculations and applying the results from Section 4 to the irreducible components
of X2,red labelled by specific Serre weights. We also determine explicitly the Galois
representations corresponding to the finite type points of the singular loci in the
setup of Theorems 5.9 and 5.10.

1.3. Acknowledgements. We are grateful to Brandon Levin for his continuous
mentorship, insights and ideas throughout the project. We would also like to thank
Toby Gee, Ariane Mézard and Stefano Morra for many helpful conversations and
comments. This work was done while K.K. was supported by the National Science
Foundation under Grant No. DMS–1926686.

2. Notation and background

Fix a prime p > 3. Let K be a finite unramified extension of Qp of degree f with

ring of integers OK and residue field k. Fix an algebraic closure K of K. For any
algebraic extension L of K in K, denote by GL the group Gal(K/L). Denote by IL
the inertia subgroup of GL. Let π

′ ∈ K be a fixed (pf − 1)-th root of p. Let K ′ be
a tame extension of K obtained by attaching π′.
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Let F be a finite extension of Fp that is the residue field of the ring of integers O
of a finite field extension E of Qp with uniformizer ϖ. Denote by F a fixed algebraic

closure of F. We take F to be large enough so that all embeddings k ↪→ F factor
through F. Fix an embedding σ0 : k ↪→ F and let

σf−j := σpj

0 .

The map j 7→ σj induces an identification of sets

Z/fZ
∼−→ HomFp

(k,F) = HomZp
(OK ,O).

For each j ∈ Z/fZ, let ωj : GK → O× be the character given by

g 7→ σj

(
g(π′)

π′

)
.

Abusing notation, we will denote the mod ϖ reduction of ωj also by ωj when it
is clear that we are speaking of F–coefficients. We will also denote the restriction
ωj |IK by ωj when it is clear that we are speaking of IK–representations. For λ a

nonzero element of F, let

urλ : GK → F
×

be the unramified character mapping the geometric Frobenius element to λ.

2.1. Tame inertial types. A tame inertial type is the isomorphism class of a
representation τ : IK → GL2(O) which has an open kernel, factors through the
tame quotient of IK , and extends to GK . Such a representation is of the form
τ ∼= η1 ⊕ η2. We say that τ is a principal series tame type if both η1 and η2 extend
to characters of GK , cuspidal otherwise. It is non–scalar if η1 ̸= η2. When τ is a
principal series type, η1 and η2 factor through IK ↠ Gal(K ′/K), see for e.g. [Bre,
Sec. 2]. In this article, it will suffice to restrict attention to principal series tame
types, for which we now introduce notation from [LHMM].

Denote by W = {id, w0} the Weyl group of GL2 (defined over Z). Here w0 = (1 2)
is the longest element of the Weyl group. Let B ⊂ GL2 be the Borel subgroup of
upper triangular matrices and T ⊂ B the subgroup of diagonal matrices. We identify
the group of its characters X∗(T ) with Z2 in the standard way. Let α denote the
positive root of GL2, and let ⟨ , ⟩ : X∗(T ) × X∗(T ) → Z be the duality pairing
where X∗(T ) is the group of cocharacters of T . The Weyl group W acts naturally
on X∗(T ). We extend this to a coordinate–wise action of WZ/fZ on X∗(T )Z/fZ.
Define

W̃
def
= X∗(T )⋊W

Denote by tν the image of ν ∈ X∗(T ) under the obvious inclusion X∗(T ) ↪→ W̃ .
Suppose µ = (µj) ∈ X∗(T )Z/fZ and s = (sj)j ∈ WZ/fZ satisfying s0s1 . . . sf−1 =

1. Let α0 = µ0 and αj = s−1
f−1s

−1
f−2 . . . s

−1
f−j(µf−j) for j ∈ Z/fZ ∖ {0}. For each

j ∈ Z/fZ, let

a(j) =

f−1∑
i=0

α−j+ip
i ∈ X∗(T )

where αl for 0 ≤ l ≤ f − 1 is to be interpreted as αl mod f . Viewing a(j) as a
cocharacter of the dual torus, we set

τ(s, µ)
def
= a(j)ωj
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for any j ∈ Z/fZ, since this definition does not depend on j. By [LHMM, Lem. 2.1.6],
for any principal series τ , there exist µ and s such that ⟨µj , α

∨⟩ ∈ [0, (p + 1)/2]
for each j, sj is id whenever ⟨µj , α

∨⟩ = 0, and τ ∼= τ(s, µ). By Lem. 2.1.8 in loc.

cit., whenever τ is non–scalar, there exists a unique (sor,j)j ∈ WZ/fZ such that

⟨s−1
or,j

(
a(j)

)
, α∨⟩ > 0.

Remark 2.1. Since our application does not require cuspidal types, we don’t
include notation needed to describe them. However, we note that cuspidal types
can also be described using the data of suitable s and µ where s0s1 . . . sf−1 equals
w0 (see for e.g. Section 2 in [LHMM]). Furthermore, everything in Sections 2, 3
and 4 can be generalized to include cuspidal types as well.

Definition 2.2. Let µ = (µj)j ∈ X∗(T )Z/fZ. We say µ is small if for each j,
⟨µj , α

∨⟩ ∈ [0, (p+ 1)/2], and sj = id whenever ⟨µj , α
∨⟩ = 0.

Definition 2.3. Define η ∈ X∗(T ) to be the element (1, 0). Abusing notation, we
also let η ∈ X∗(T )Z/fZ be the element that is (1, 0) in each coordinate.

2.2. Breuil–Kisin modules. Let S
def
= W (k)[[u]], where W (k) is the ring of Witt

vectors of k. The ring SK′ is equipped with a Frobenius endomorphism φ that
extends the usual arithmetic Frobenius on W (k) lifted from the pf -power map on
k, and maps u to up. It also admits an action of Gal(K ′/K) extending the usual
trivial action of Gal(K ′/K) on W (k), so that if g ∈ Gal(K ′/K), then

g(u) =
g(π′)

π′ u.

Let E(u) denote the minimal polynomial of π′ over W (k). The subring S0 of
Gal(K ′/K)–invariants of S is W ((k))[[v]] where

v := upf−1.

For a O/ϖa–algebra A where a ≥ 1, let SA
def
= (W (k) ⊗Zp

A)[[u]] and equip
it with A–linear actions of φ and Gal(K ′/K) extended naturally from the φ and
Gal(K ′/K) actions on S. The subring S0

A of Gal(K ′/K)–invariants of SA is
(W (k)⊗Zp A)[[v]]. Let τ be a principal series type.

Definition 2.4. A Breuil–Kisin module M of rank 2 with A–coefficients and descent
data of type τ is a rank 2 projective SA–module M together with

• a φ–semilinear map φM : M → M whose linearization is an isomorphism
after inverting u, and

• a semilinear action of Gal(K ′/K) on M commuting with φM such that
Zariski-locally on SpecA

M⊗k,σj A mod u ∼= τ∨ ⊗O A

as Gal(K ′/K)–representations.

We say that M has height at most h if the cokernel of ΦM is annihilated by E(u).

Let M be a Breuil–Kisin module of rank 2 with A–coefficients and descent data
of type τ . For each σj : W (k) → O, there is a corresponding idempotent ej ∈
W (k)⊗Zp

O such that x⊗ 1 and 1⊗σj(x) have the same action on ej(W (k)⊗Zp
O),

a rank 1 O–module. Set Mj = ejM, a module over A[[u]], and let

ΦM,j : φ
∗(Mj−1) → Mj
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be the map induced by ΦM. Each Mj is Zariski locally on SpecA free as an A[[u]]
module by [BBH+, Lem. 2.3].

Suppose τ ∼= τ(s, µ) is non–scalar. For j ∈ Z/fZ, let a
(j)
0 ,a

(j)
1 ∈ Z be such that

a(j) = (a
(j)
0 , a

(j)
1 ). By the argument in [GKKSW, Lem. 2.1.3] for e.g., Zariski locally

on SpecA one can choose an ordered basis βj = (ej , fj) of Mj so that Gal(K ′/K)
acts on ej , fj via

ω
−a

(j)
0

j , ω
−a

(j)
1

j

respectively. Following convention, we call a Z/fZ–tuple β = (βj)j of such ordered

bases an eigenbasis of M. Given an eigenbasis β of M, let C
(j)
M,β be the matrix of

ΦM,j with respect to the bases φ∗(βj−1) and βj . For each j ∈ Z/fZ, set

A
(j)
M,β

def
= Ad

(
s−1
or,ju

−a(j)
)
(C

(j)
M,β).

Here, the notation Ad A(B) means ABA−1 and if ν = (ν0, ν1) ∈ X∗(T ) and x ∈ SA,
then xν is the diagonal matrix

(
xν0 0
0 xν1

)
.

Proposition 2.5. [LLHLM, Prop. 5.1.8] Let M be a Breuil–Kisin module of rank 2
with A–coefficients and descent data of principal series non–scalar type τ ∼= τ(s, µ).
Let β1, β2 be two eigenbases of M related via

β2,jD
(j) = β1,j

with D(j) ∈ GL2(A[[u]]) for each j ∈ Z/fZ. Set

I(j)
def
= Ad

(
s−1
or,ju

−a(j)
)(

D(j)
)
.

Then I(j) ∈ GL2(A[[v]]) is upper triangular mod v, and

A
(j)
M,β2

= I(j)A
(j)
M,β1

Ad
(
s−1
j vµj

) (
φ
(
I(j−1)

))−1

.

Furthermore, if I(j) ∈ GL2(A[[v]]) upper triangular mod v for each j ∈ Z/fZ, then

Ad
(
ua(j)

sor,j

) (
I(j)
)
= D(j) ∈ GL2(A[[u]]) and for any eigenbasis β,

(
β(j)D(j)

)
j
is

also an eigenbasis.

Definition 2.6. Following [LHMM], let Y η,τ be the fppf stack over Spf(O) that
assigns to an O/ϖa–algebra A the groupoid of Breuil–Kisin modules of rank 2 with
A–coefficients, descent data of type τ and height at most 1 satisfying the additional
determinant condition

det(ΦM) ∈ vA[[v]]×.

Let Y η,τ
F denote the special fiber of this stack.

Remark 2.7. By [BBH+, Prop. 2.7] and [CEGSb, Cor. 4.5.3(2)],

Y η,τ
F = Cτ∨,BT,1

where the right hand side is the stack studied in [CEGSc].

We have the following description of the irreducible components of Y η,τ
F .

Theorem 2.8. There exists a bijective correspondence between {L,R}Z/fZ and the
set of irreducible components of Y η,τ

F given in the following way: If

S = (Sj)j ∈ {L,R}Z/fZ,
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then the corresponding irreducible component Y η,τ
S is the closed substack of Y η,τ

F

obtained by imposing the condition that if Sj = L (resp. Sj = R), then M ∈ Y η,τ
S (A)

for a local F–algebra A if and only if v divides the top left (resp. bottom right) entry

of A
(j)
M,β for some, equivalently any, choice of eigenbasis β of M.

Proof. Immediate from [BBH+, Thm. 3.16]. □

2.3. Étale φ-modules and Galois representations. Let A be an O/ϖa–algebra
for some a ≥ 1.

Definition 2.9. An étale φ–module M of rank 2 with A–coefficients is a rank 2
projective module over S0

A[1/v], together with a φ–semilinear map φM : M → M
whose linearization ΦM : φ∗M → M is an isomorphism.

Let M be an étale φ–module of rank 2 with A–coefficients. As in the setting of
Breuil–Kisin modules, we can decompose M ∼= ⊕j∈Z/fZMj by setting Mj := ejM.
The map ΦM induces maps ΦM,j : φ

∗Mj−1 → Mj .

Definition 2.10. Let Φ-Modét,2K denote the fppf stack over Spf(O) that assigns
to an O/ϖa–algebra A the groupoid of rank 2 étale φ–modules of rank 2 with A
coefficients.

Define a map

ετ : Y η,τ → Φ-Modét,2K

by setting ετ (M) = M[1/u]Gal(K′/K).

Remark 2.11. The map ετ is proper by [CEGSb, Thm. 5.1.2] and by [BBH+,
Thm. 4.5], the scheme–theoretic image Zτ of ετ is isomorphic to the Emerton–Gee
stack of potentially Barsotti–Tate representations of type τ∨, described in [EG,

Defn. 4.8.8]. Denote this locus by X τ∨,BT. The scheme–theoretic image of Y η,τ
F is

the reduced stack Zτ,1. Denote by π the induced map Y η,τ
F → Zτ,1.

Definition 2.12. For S ∈ {L,R}Z/fZ, denote by Zτ
S the scheme–theoretic image

of Y η,τ
S under π.

Proposition 2.13. [LLHLM, Prop. 5.4.2] Let M ∈ Y η,τ (A) and β an eigenbasis
of M. Let τ = τ(s, µ). Then there exists a basis b for ετ (M) such that the matrix

of ΦM,j with respect to b is given by A
(j)
M,βs

−1
j vµj .

Finally, we describe how to assign a Galois representation to an étale φ–module.
Fix a compatible sequence {πn}n of pn-th roots of p in K, with πp

n+1 = πn. Since
gcd(e(K ′/K), p) = 1, {πn}∞n=0 determines a compatible sequence {π′

n}∞n=0 of pn-th

roots of π′ satisfying (π′
n)

e(K′/K) = πn. Let

K∞ := ∪nK(πn), and K ′
∞ := ∪nK

′(π′
n).

By Fontaine’s theory of the field of norms, if |A| < ∞, then there exists a fully faithful
functor T from the étale φ–modules with A–coefficients to GK∞–representations
with A–coefficients. To describe this functor, we first define R := limx 7→xp OK/p.
Let π′ = (π′

n)n ∈ R and let [π′] be the canonical multiplicative lift of π′ to the Witt
vectors of R, W (R). There exists a φ–equivariant inclusion S ↪→ W (R) over W (k)
that maps u → [π′]. This embedding extends to inclusions

OE ↪→ W (Frac(R))
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and

E ↪→ W (Frac(R))[1/p],

where OE is the p–adic completion of S[1/u] and E is its ring of fractions. The ring
OE is a discrete valuation ring with uniformizer p and residue field k((u)). Let Enr

be the maximal unramified extension of E in W (Frac(R))[1/p] with ring of integers
OEnr and residue field k((u))sep, a separable closure of k((u)). Let OÊnr be the
p–adic completion of OEnr .

Definition 2.14. Let |A| < ∞. If M ∈ Φ-Modét,2K (A), set

T (M)
def
=
(
OÊnr ⊗S0[1/v] M

)φ=1

equipped with diagonal action of the group GK∞ . We also define T (M) for M a
Breuil–Kisin module with A–coefficients and descent data by setting

T (M)
def
= T (ετ (M)) .

Using [EG, Thm. 2.4.1, 2.7.8] for e.g., we note that the right hand side above
equals (

OÊnr ⊗S[1/u] M[1/u]
)φ=1

,

which agrees with the definition of T (M) in [CEGSc, Defn. 2.2.3].

2.4. Serre weights and the Emerton–Gee stack. A Serre weight is an isomor-
phism class of an irreducible F–representation of GL2(k). Such representations are
precisely those of the form

σm,n :=
⊗

j∈Z/fZ

(
detmj ⊗ Symnj k2

)
⊗k,σj

F

where k2 denotes the standard two–dimensional representation of GL2(k) and
0 ≤ nj ≤ p − 1 for each j. The representation is non–Steinberg if for some j,
nj < p− 1.

If σm,n is a non–Steinberg Serre weight, then by the main result of [CEGSa],
the corresponding irreducible component X (σm,n) of X2,red is the locus of mod
p representations that admit crystalline lifts with Hodge–Tate weights {−nj −
mj ,−mj +1} in the j-th embedding. Here, we are normalizing Hodge–Tate weights
so that all Hodge–Tate weights of the cyclotomic character are equal to −1.

3. smooth–local charts

3.1. Loop groups and torsors over Y η,τ
F and Zτ,1. From now onwards, we

will work entirely over F–coefficients, although as described in detail in [LHMM],
many of the descriptions below extend to O–coefficients. Our primary objective in
this subsection is to construct smooth–local affine charts on Zτ,1 following closely
various constructions in [LHMM, Sec. 3].

Let τ = τ(s, µ) be a fixed non–scalar principal series tame type with µ = (µj)j
small. Assume that p− 2 > maxj⟨µj , α

∨⟩. This is true if p > 3 and maxj⟨µj , α
∨⟩ ≤

(p − 1)/2. Let µj = (µj,0, µj,1) for each j. Define a functor LG by setting for an
F–algebra A

LG(A) := GL2(A((v)))
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as well as various subfunctors

L+G(A) := GL2(A[[v]])

L−G(A) := GL2(A[1/v])

L+G(A) := {P ∈ L+G(A) | P is upper triangular mod v}
L+
r G(A) := {P ∈ L+G(A) | P ≡ id mod vr}

L−
r G(A) := {P ∈ L−G(A) | P ≡ id mod 1/vr}

A(η)(A) := {P ∈ Mat2(A[[v]]) | P is upper triangular mod v,detP ∈ vA[[v]]×}

where r is any positive integer in the definition of L+
r G and L−

r G. Define

LGbd,vvµ

(A) ⊂ LG(A)Z/fZ

to be the set of (Pj)j ∈ LG(A)Z/fZ satisfying, for each j,

• Pj ∈ vµj,1 Mat2(A[[v]]), and
• detPj ∈ vµj,0+µj,1+1A[[v]]×.

Remark 3.1. We are allowing nonzero values of µj,1, and so, this definition of

LGbd,vvµ

is slightly different from the mod p version of the one in [LHMM].

Define

LGτ (A) := {(Wjs
−1
j vµj )j ∈ LG(A)Z/fZ |Wj ∈ A(η)(A) for each j} ⊂ LGbd,vvµ

.

Definition 3.2. We define shifted φ–conjugation to be a left action of LGZ/fZ

(and its various subfunctors) on itself denoted by ·φ and given by setting

(Pj)j ·φ (Qj)j
def
=
(
PjQjφ(Pj−1)

−1
)
.

Lemma 3.3. [LHMM, Lem. 3.2.1] Let M ∈ Y η,τ
F (A) for an an F–algebra A. Then,

Zariski-locally on SpecA, M has an eigenbasis β. The assignment

M 7→
(
A

(j)
M,βs

−1
j vµj

)
j∈Z/fZ

defines an isomorphism of algebraic stacks over F

Y η,τ
F

∼−→
[
LGτ

/
φ

(
L+GZ/fZ

)]
(3.4)

and hence a morphism

Y η,τ
F →

[
LGbd,vvµ

/
φ

(
L+GZ/fZ

)]
.(3.5)

Define a morphism[
LGbd,vvµ

/
φ

(
L+GZ/fZ

)]
→ Φ-Modét,2K(3.6)

by sending the class of P = (Pj)j to the étale φ–module ι(P ) which is free of rank
2 and such that Φι(P ),j : φ

∗ (ι(P )j−1) → ι(P )j has matrix Pj in the standard basis.

Proposition 3.7. [LHMM, Prop. 3.2.4] The map (3.6) is a closed immersion, and
the map ετ |Y η,τ

F
factors as

Y η,τ
F

π−→ Zτ,1 ↪→
[
LGbd,vvµ

/
φ

(
L+GZ/fZ

)]
(3.6)
↪−−−→ Φ-Modét,2K(3.8)

where the composite of the first two arrows is the map (3.5).
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Definition 3.9. Define a quotient sheaf

Grbd,vv
µ

1 :=
[(

L+
1 G

Z/fZ
)∖

LGbd,vvµ
]

and its closed subsheaf

Grτ1 :=
[(

L+
1 G

Z/fZ
)∖

LGτ
]
,

where the quotient is for action by left multiplication.

Remark 3.10. The sheaves Grbd,vv
µ

1 and Grτ1 are represented by finite type schemes.

Indeed, the sheaf Grbd,vv
µ

1 is a torsor for an affine scheme over the quotient[(
L+GZ/fZ

)∖
LGbd,vvµ

]
,

which in turn is a closed subscheme of a finite type scheme by the argument in [Zhu,

Lem. 1.1.5]. Therefore, by [Sta, Tag 0245], Grbd,vv
µ

1 is representable.

Lemma 3.11. There exists an isomorphism

Grbd,vv
µ

1
∼=
[
LGbd,vvµ

/
φ

(
L+
1 G

Z/fZ
)]

which induces an isomorphism

Y η,τ
F

∼=
[
Grτ1

/
φ

(
BZ/fZ

)]
Proof. By [LHMM, Lem. 3.3.7]. □

Remark 3.12. The proofs of Proposition 3.7 and Lemma 3.11 critically use the
assumption that p− 2 > maxj⟨µj , α

∨⟩.

Remark 3.13. If (Pj)j represents a point of Grbd,vv
µ

1 and (gj)j of

GL
Z/fZ
2

∼=
(
L+G/L+

1 G
)Z/fZ

,

then we have

(gj)j ·φ (Pj)j = (gjPjg
−1
j−1).

Therefore, φ–action induces simply a shifted conjugation action of GL
Z/fZ
2 and its

subgroups on Grbd,vv
µ

1 .

Lemma 3.14. The stack Y η,τ
S is smooth.

Proof. The inclusion

Ad

(
1

v

)(
L+
2 G
)
⊂ L+

1 G

allows the construction of a map∏
j∈Z/fZ

(
L+
2 G\L+G

)
→ Grτ1(3.15)

https://stacks.math.columbia.edu/tag/0245
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given in the following way: If (Aj)j ∈ L+GZ/fZ represents an object on the left,
then its image is the object represented by (Bj)j ∈ LGτ where

Bj =


Aj

(
v

1

)
if Sj = L,(

1

v

)
Aj if Sj = R.

By Theorem 2.8 and [BBH+, (3.14)], one can specify a point M of Y η,τ
S with an

eigenbasis β by specifying

A
(j)
M,β ∈


L+G

(
v

1

)
if Sj = L,(

1

v

)
L+G if Sj = R.

Therefore, there exists a map∏
j∈Z/fZ

(
L+
2 G\L+G

)
→ Y η,τ

S(3.16)

fitting into a commutative diagram

∏
j∈Z/fZ

(
L+
2 G\L+G

)
Grτ1

Y η,τ
S Y η,τ

F

(3.15)

(3.16)

closed

where the right vertical arrow is induced from the second isomorphism in Lemma
3.11. The top horizontal and right vertical arrows are representable, and so the same
is true for the map in (3.16). Since an eigenbasis always exists Zariski–locally, the
map in (3.16) is surjective on points valued in local rings and therefore, is formally
smooth. In particular, it is a smooth surjective map with smooth domain, and so,
the codomain is also smooth. □

Let z̃ = (z̃j)j ∈ W̃Z/fZ. As described in [LHMM, Sec. 3.3], there exists an open
immersion

Ũ(z̃) :=

 ∏
j∈Z/fZ

L−G z̃j

 ∩Grbd,vv
µ

1 ↪→ Grbd,vv
µ

1 .

The scheme Ũ(z̃) has a natural structure as a product of schemes
∏

j Ũ(z̃j).

Next, we construct the following commutative diagram for S ∈ {L,R}Z/fZ and

z̃ ∈ W̃Z/fZ:
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(3.17)

Ỹ η,τ (z̃)S Z̃τ (z̃)S

Ỹ η,τ (z̃) Z̃τ,1(z̃) Ũ(z̃)

Ỹ η,τ
S Z̃τ

S

Ỹ η,τ Z̃τ,1 Grbd,vv
µ

1

Y η,τ
S Zτ

S

Y η,τ
F Zτ,1

[
LGbd,vvµ

/
φ

(
L+GZ/fZ

)]

cl. cl.

cl.

□
π̃S

cl. cl.

π̃ cl.

□πS

cl. cl.

π cl.

where

• the bottom two arrows are respectively the first two arrows in (3.8);
• the vertical arrow in the bottom right

Grbd,vv
µ

1 →
[
LGbd,vvµ

/
φ

(
L+GZ/fZ

)]
is the composition of the first isomorphism in Lemma 3.11 with the quotient

under shifted conjugation by GL
Z/fZ
2 ;

• all hooked arrows annotated with cl. are closed immersions, while all those
marked with a circle are open immersions;

• the schemes Z̃τ,1 and Z̃τ,1 are defined so that the right most squares (marked
with a square symbol in the center) are pullback squares; and

• the stacks Ỹ η,τ (z̃)S , Ỹ
η,τ (z̃), Ỹ η,τ

S and Ỹ η,τ , and the schemes Z̃τ (z̃)S and

Z̃τ
S , are defined so that the front, back and side faces (but not necessarily

the top and bottom faces!) of the two cubes are pullback squares.

Remark 3.18. We make the following note for translation between the paper
[LHMM] and this article. In the paper [LHMM], there are various pairs of different

but related notions that are identified mod p, namely, Y mod,η,τ and Y η,τ , Ỹ mod,η,τ

and Ỹ η,τ , and Z̃mod,τ and Z̃τ . Since we are working entirely mod p, we do not

define Y mod , Ỹ mod,η,τ and Z̃mod,τ at all.

Proposition 3.19. (i) The stack Ỹ η,τ is a scheme identifying with the closed
subscheme of

Grbd,vv
µ

1 × (B\GL2)
Z/fZ

consisting of pairs ((Pj)j , (lj)j) such that if l̃j is a lift of lj to GL2 and P̃j

a lift of Pj to LG, then(
l̃jP̃j l̃

−1
j−1

)
j
∈ LGτ .
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Equivalently, for each j,

l̃jP̃j l̃
−1
j−1v

−µjsj ∈ A(η).

(ii) For z̃ = (z̃j)j ∈ W̃Z/fZ, the open subscheme Ỹ η,τ (z̃) ⊂ Ỹ η,τ identifies with
the open subscheme consisting of those pairs ((Pj)j , (lj)j) which, in addition
to satisfying (1) above, have the property that for each j, Pj is represented
(uniquely) by a matrix of the form

κjXj z̃j

where κj is a point of GL2 and Xj of L−
1 G.

(iii) For S = (Sj)j ∈ {L,R}Z/fZ, the closed subscheme Ỹ η,τ (z̃)S ⊂ Ỹ η,τ (z̃)
further identifies with the subscheme consisting of those pairs

((Pj)j , (lj)j)

which, in addition to satisfying (2) above, have the property that if l̃j is any

lift of lj to GL2 and P̃j is a matrix lifting Pj, then

l̃jP̃j l̃
−1
j−1v

−µjsj

has top left (resp. bottom right) entry divisible by v if Sj = L (resp. Sj = R)
for each j.

Proof. The first part of the statement is proven in [LHMM, Prop. 3.3.1]. The second

part follows from the definition of Ũ(z̃). The third part is immediate from Theorem
2.8. □

Lemma 3.20. The proper maps π̃ and π̃S are scheme–theoretically dominant.

Proof. Being smooth torsors over the reduced stacks Zτ,1 and Z̃τ
S respectively, Z̃τ,1

and Z̃τ
S are reduced algebraic stacks. Being pullbacks of π and πS respectively, the

maps π̃ and π̃S are proper and surjective. The universal property of scheme–theoretic
images finishes the proof. □

Lemma 3.21. A Zariski open cover of Ỹ η,τ (resp. Z̃τ ) is given by the set of

all Ỹ η,τ (z̃) (resp. Z̃τ (z̃)) such that z̃ = (z̃j)j∈Z/fZ with z̃j = w̃js
−1
j vµj where

w̃j ∈ {w0tη, tw0(η)} for each j.

Proof. The statement is true if w̃j ∈ {tη, w0tη, tw0,η} for each j by [LHMM,
Lem. 3.3.5]. We claim that

Ũ(tηs
−1
j vµj ) = Ũ(w0tηs

−1
j vµj ).

Indeed, this is immediate because L−Gtηs
−1
j vµj = L−Gw0tηs

−1
j vµj . □

3.2. Auxiliary schemes. Next, we construct certain auxiliary schemes through

which the map Ỹ η,τ
S → Z̃τ

S factors and that will make it easier to study the geometry

of Z̃τ
S later. The constructions in this section follow closely those in [LHMM, Sec. 4.1]

with some variants that allow a detailed study of various irreducible components of

Z̃τ .
We fix τ = τ(s, µ) non–scalar principal series tame type with µ = (µj)j small;

z̃ = (z̃j)j ∈ W̃Z/fZ with each z̃j = w̃js
−1
j vµj for some w̃j ∈ {w0tη, tw0(η)}; and

S = (Sj)j ∈ {L,R}Z/fZ. Assume p− 2 > maxj⟨µj , α
∨⟩.
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Definition 3.22. Define B̃aj(z̃j) to be the closed F–subscheme of P1×GL2 ×L−
1 G×

P1 parameterizing tuples

(lj , κj , Xj , rj) ∈ P1 ×GL2 ×L−
1 G×P1

such that if l̃j , r̃j are lifts to GL2 of lj , rj ∈ P1 respectively (under the obvious map
GL2 → B\GL2

∼= P1) and

Wj
def
= l̃jκjXjw̃js

−1
j vµj r̃−1

j v−µjsj ,(3.23)

then Wj ∈ A(η).

Define a closed subscheme B̃aj(z̃j)Sj
of B̃aj(z̃j) by further requiring that the top

left entry of Wj is divisible by v if Sj = L and the bottom right entry is divisible by
v if Sj = R. Since µj is dominant, these criteria are independent of the choice of

lifts l̃j and r̃j .

Definition 3.24. Define Baj(z̃j) to be the closed subscheme of B̃aj(z̃j) obtained
by setting κj = 1. The scheme Baj(z̃j) naturally admits a monomorphism into
P1 × L−

1 G × P1. Define a closed subscheme Baj(z̃j)Sj
of Baj(z̃j) as the fiber

product

B̃aj(z̃j)Sj ×B̃aj(z̃j)
Baj(z̃j).

We define a map

p̃rj : B̃aj(z̃j) → Ũ(z̃j)

by mapping (lj , κj , Xj , rj) 7→ κjXj z̃j . Denote by prj the restriction of p̃rj to

Baj(z̃j). Denote by pj , qj : Baj(z̃j) → P1 the obvious projections to first and last
coordinates respectively.

Lemma 3.25. The maps p̃rj and prj are projective.

Proof. It suffices to prove the statement for p̃rj . The map p̃rj sits in the following
commutative diagram

(3.26)

B̃aj(z̃j) P1 ×GL2 ×L−
1 G×P1

Ũ(z̃j) L−G

cl.

p̃rj

where the bottom arrow is the map sending (P z̃j) 7→ P and is a monomorphism; the
rightmost projective surjection is given by mapping (lj , κj , Xj , rj) 7→ κjXj ; and the
top horizontal arrow is a closed immersion. Therefore, the composition of the top
horizontal arrow with the right vertical arrow is projective, implying by cancellation
that p̃rj is as well. □

Define an isomorphism

B̃aj(z̃j)
∼−→ Baj(z̃j)×GL2(3.27)

(lj , κj , Xj , rj) 7→ (ljκj , Xj , rj), κj .

Here, ljκj is to be understood as the image of l̃jκj in B\GL2
∼= P1 for some lift

l̃j ∈ GL2 of lj . The isomorphism in (3.27) induces an isomorphism

B̃aj(z̃j)Sj
∼= Baj(z̃j)Sj

×GL2 .(3.28)
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Lemma 3.29. The scheme–theoretic image of B̃aj(z̃j) (resp. B̃aj(z̃j)Sj
) under

p̃rj is isomorphic to the product of GL2 with the scheme–theoretic image of Baj(z̃j)
(resp. of Baj(z̃j)Sj ).

Proof. Since L−G ∼= GL2 ×L−
1 G, pullback along the bottom arrow of (3.26) induces

an isomorphism

Ũ(z̃) ∼= U(z̃)×GL2

for an appropriate closed subscheme U(z̃) ⊂ Ũ(z̃). Via (3.27) and the isomorphism
above, the map p̃rj can be viewed as a map

Baj(z̃j)×GL2 → U(z̃)×GL2

given by sending ((ljκj , Xj , rj), κj) 7→ (Xj z̃j , κj). Therefore p̃rj is the product of a
map pr′j : Baj(z̃j) → U(z̃) and id : GL2 → GL2, implying that the scheme–theoretic
image of p̃rj is isomorphic to a product of the scheme–theoretic image of pr′j with
GL2. Finally, the observation that the scheme–theoretic image of pr′j is isomorphic
to that of

prj : Baj(z̃j)
p̃r′j−−→ U(z̃)

closed
↪−−−→ Ũ(z̃)

finishes the proof. □

We let Zj denote the scheme–theoretic image of Baj(z̃j)Sj
under prj . Define

B̃a(z̃)
def
=

∏
j∈Z/fZ

B̃aj(z̃j)

and let B̃a(z̃)S ⊂ B̃a(z̃) be the closed subscheme
∏

j∈Z/fZ B̃aj(z̃j)Sj
.

prB̃ : B̃a(z̃) −→ Ũ(z̃)

by mapping (lj , κj , Xj , rj)j 7→ (κjXj z̃j)j . Denote by Im(prB̃) the scheme–theoretic

image of prB̃, admitting a closed immersion into Ũ(z̃). By Lemma 3.29, the

scheme–theoretic image of B̃a(z̃)S under prB̃ is isomorphic to∏
j

(GL2 ×Zj) ,

which therefore admits a closed immersion into Im(prB̃).

Lemma 3.30. Setting lj−1 = rj for each j ∈ Z/fZ cuts out closed subschemes

Ỹ η,τ (z̃)
∆−→ B̃a(z̃) and Ỹ η,τ (z̃)S

∆S
↪−−→ B̃a(z̃)S.

Proof. Obvious from the definitions of B̃a(z̃) and B̃a(z̃)S , and Proposition 3.19. □
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We obtain the following commutative diagram

(3.31)

Ỹ η,τ (z̃)S B̃a(z̃)S

Z̃τ (z̃)S
∏

j (GL2 ×Zj)

Ỹ η,τ (z̃) B̃a(z̃)

Z̃τ (z̃) Im(prB̃) Ũ(z̃)

∆S

cl.

cl.

cl.

cl.

cl.

cl.
∆

cl.

cl. cl.

where

• except for the nodes B̃a(z̃)S , B̃a(z̃),
∏

j (GL2 ×Zj) and Im(prB̃), this dia-

gram is a subdiagram of (3.17);
• all two-headed arrows are proper and scheme–theoretically dominant; and
• all hooked arrows annotated with cl. are closed immersions.

4. Local geometry

We fix τ = τ(s, µ) non–scalar principal series tame type with µ = (µj)j small; z̃ =

(z̃j)j ∈ W̃Z/fZ with each z̃j ∈ {w0tη, tw0(η)}s
−1
j vµj ; and S = (Sj)j ∈ {L,R}Z/fZ.

Assume p− 2 > maxj⟨µj , α
∨⟩.

The schemes Baj(z̃j) are described in detail in [LHMM, Table 3] (in loc. cit.,
everything is defined over O and comparing it to this article requires setting p = 0).
We now add to those descriptions to further describe the closed subschemes Baj(z̃j)Sj

explicitly.

Lemma 4.1. For each j, the ideals cutting out Baj(z̃j)L and Baj(z̃j)R in Baj(z̃j)
as well as the scheme–theoretic images of Baj(z̃j)L and Baj(z̃j)R under prj are
given by Tables 1 and 2 respectively. Here, [x : y] are the coordinates of ljκj , [x

′ : y′]
are the coordinates of rj, and the rest of the variables are in terms of [LHMM,
Table 3].

Proof. Let (ljκj , Xj , rj) be a point of Baj(z̃j) and let l̃j and r̃j be lifts to GL2 of
lj and rj respectively. Let

l̃jκj =

(
u z
x y

)
and r̃j =

(
t −s
x′ y′

)
,

where u, z, s, t can be freely chosen subject to the restriction that l̃j , r̃j are invertible.
Upon restricting to the distinguished opens D(x, x′), D(y, x′), D(x, y′), D(y, y′), we
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PPPPPPPP⟨µj , α
∨⟩

w̃j w0tη tw0(η)

sj

> 1
w0

I = (B)

Baj(z̃j)L = ProjF[x, y]× SpecF[C ′]

Zj = SpecF[C ′]

I = (1)

Baj(z̃j)L = Zj = ∅

id

I = (C)

Baj(z̃j)L = ProjF[x, y]× SpecF[C ′]

Zj = SpecF[C ′]

I = (1)

Baj(z̃j)L = Zj = ∅

= 1
w0

I = (B,C,D)

Baj(z̃j)L = ProjF[x, y]× ProjF[x′, y′]

Zj = SpecF

I = (1)

Baj(z̃j)L = Zj = ∅

id

I = (C)

Baj(z̃j)L = ProjF[x, y]× SpecF[C ′]

Zj = SpecF[C ′]

I = (1)

Baj(z̃j)L = Zj = ∅

= 0 id

I = (x′ − y′C)

Baj(z̃j)L = ProjF[x, y]× SpecF[C]

Zj = SpecF[C]

I = (y′ − x′B)

Baj(z̃j)L = ProjF[x, y]× SpecF[B]

Zj = SpecF[B]

Table 1. Ideals I cut out Baj(z̃j)L in Baj(z̃j) and the scheme Zj is the scheme–theoretic image
of Baj(z̃j)L under prj . Different font colors correspond to different isomorphism classes of the

tuple (Baj(z̃j)L, pj |Baj(z̃j)L
, qj |Baj(z̃j)L

, prj |Baj(z̃j)L
).

will make the following choices for u, z, s, t:

u = 0, z = 1, s = 1, t = 0 on D(x, x′),

u = 1, z = 0, s = 1, t = 0 on D(y, x′),

u = 0, z = 1, s = 0, t = 1 on D(x, y′),

u = 1, z = 0, s = 0, t = 1 on D(y, y′).

We now deal with the different cases separately, taking the descriptions of

sjw
−1
j Xjwjs

−1
j

along with the relations the various variables appearing in Xj satisfy from [LHMM,
Tables 2, 3]. In the following, let kj := ⟨µj , α

∨⟩.
(1) Let kj > 1, (sj , w̃j) = (w0, w0tη). Then

Xj = wjs
−1
j

(
1 +BC ′v−kj Bv−1

C ′v−kj+1 1

)
sjwj =

(
1 +BC ′v−kj Bv−1

C ′v−kj+1 1

)
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PPPPPPPP⟨µj , α
∨⟩

w̃j w0tη tw0(η)

sj

> 1
w0

I = (x)

Baj(z̃j)R = Zj = SpecF[B,C ′]

I = (0)

Baj(z̃j)R = Zj = SpecF[C,C ′]

id
I = (x)

Baj(z̃j)R = Zj = SpecF[C,C ′]

I = (0)

Baj(z̃j)R = Zj = SpecF[C,C ′]

= 1
w0

I = (xy′ − yx′)

Baj(z̃j)R =

SpecF[B,C,D]

×ProjF[x, y]/(Dx− Cy,Bx+Dy)

Zj = SpecF[B,C,D]/(D2 +BC)

I = (0)

Baj(z̃j)R = Zj = SpecF[C,C ′]

id
I = (x)

Baj(z̃j)R = Zj = SpecF[C,C ′]

I = (0)

Baj(z̃j)R =

SpecF[B,C,D]

×ProjF[x, y]/(Dx− Cy,Bx+Dy)

Zj = SpecF[B,C,D]/(D2 +BC)

= 0 id

I = (x)

Baj(z̃j)R = SpecF[C]× ProjF[x′, y′]

Zj = SpecF[C]

I = (x)

Baj(z̃j)R = SpecF[B]× ProjF[x′, y′]

Zj = SpecF[B]

Table 2. Ideals I cut out Baj(z̃j)R in Baj(z̃j) and the scheme Zj is the scheme–theoretic image
of Baj(z̃j)R under prj . Different font colors correspond to different isomorphism classes of the

tuple (Baj(z̃j)R, pj |Baj(z̃j)R
, qj |Baj(z̃j)R

, prj |Baj(z̃j)R
).

with the variables B,C ′ satisfying x′ − y′C ′ = xB = 0. Thus, Baj(z̃j) =
D(y′), (s, t) = (0, 1) and

(det r̃j)Wj =

(
u z
x y

)(
1 +BC ′v−kj Bv−1

C ′v−kj+1 1

)(
0 1
v 0

)(
1 −x′v−kj

0 y′

)
.

This shows that v | (Wj)1,1 if and only if uB = 0, and v | (Wj)2,2 if and
only if xy′ = 0. Note that uB = 0 if and only if B = 0, since u = 1 on
D(y, y′) and B = 0 on D(x, y′). We have xy′ = 0 if and only if x = 0 since
we are on D(y′).

(2) Let kj ≥ 1, (sj , w̃j) = (w0, tw0(η)). Then

Xj = wjs
−1
j

(
1 0

Cv−1 + C ′v−kj−1 1

)
sjwj =

(
1 Cv−1 + C ′v−kj−1

0 1

)
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with the variables C,C ′ satisfying x′ − y′C ′ = x = 0. Thus Baj(z̃j) =
D(y, y′), (u, z, s, t) = (1, 0, 0, 1) and

(det r̃j)Wj =

(
1 0
0 y

)(
1 Cv−1 + C ′v−(kj+1)

0 1

)(
1 0
0 v

)(
1 −x′v−kj

0 y′

)
.

This shows that v ∤ (Wj)1,1 and v | (Wj)2,2.
(3) Let kj ≥ 1, (sj , w̃j) = (id, w0tη). Then

Xj = wjs
−1
j

(
1 0

Cv−1 + C ′v−kj−1 1

)
sjwj =

(
1 Cv−1 + C ′v−kj−1

0 1

)
with the variables C,C ′ satisfying x′ − y′C ′ = xC = 0. Thus, Baj(z̃j) =
D(y′), (s, t) = (0, 1) and

(det r̃j)Wj =

(
u z
x y

)(
1 Cv−1 + C ′v−kj−1

0 1

)(
0 1
v 0

)(
y′ 0

−x′v−kj 1

)
.

This shows that v | (Wj)1,1 if and only if uy′C = 0, and v | (Wj)2,2 if and
only if x = 0. The equality uy′C = 0 holds if and only if uC = 0 since
we are on D(y′). Moreover, uC = 0 if and only if C = 0, since u = 1 on
D(y, y′) and C = 0 on D(x, y′).

(4) Let kj > 1, (sj , w̃j) = (id, tw0(η)). Then

Xj = wjs
−1
j

(
1 +BC ′v−kj Bv−1

C ′v−kj+1 1

)
sjwj =

(
1 +BC ′v−kj Bv−1

C ′v−kj+1 1

)
with the variables B,C ′ satisfying x′ − y′C ′ = x = 0. Therefore, Baj(z̃j) =
D(y, y′), (u, z, s, t) = (1, 0, 0, 1) and

(det r̃j)Wj =

(
1 0
0 y

)(
1 +BC ′v−kj Bv−1

C ′v−kj+1 1

)(
1 0
0 v

)(
y′ 0

−x′v−kj 1

)
Hence, v ∤ (Wj)1,1 and v | (Wj)2,2.

(5) Let kj = 1, (sj , w̃j) = (w0, w0tη). Then

Xj = wjs
−1
j

(
1−Dv−1 Bv−1

Cv−1 1 +Dv−1

)
sjwj =

(
1−Dv−1 Bv−1

Cv−1 1 +Dv−1

)
with the variables B,C,D satisfying x′D − y′C = x′B + y′D = xD − yC =
xB + yD = 0. Thus,

(det r̃j)Wj =

(
u z
x y

)(
1−Dv−1 Bv−1

Cv−1 1 +Dv−1

)(
0 1
v 0

)(
t −x′v−1

sv y′

)
This shows that v | (Wj)1,1 if and only if tuB + szC + (tz − su)D = 0 and
v | (Wj)2,2 if and only if xy′ − yx′ = 0. Checking on each of the charts, we
find that tuB + szC + (tz − su)D = 0 if and only if B = C = D = 0.

(6) Let kj = 1, (sj , w̃j) = (id, tw0(η)). Then

Xj = wjs
−1
j

(
1−Dv−1 Bv−1

Cv−1 1 +Dv−1

)
sjwj =

(
1−Dv−1 Bv−1

Cv−1 1 +Dv−1

)
with the variables B,C,D satisfying x′D−y′C = x′B+y′D = xy′−yx′ = 0.
Thus,

(det r̃j)Wj =

(
u z
x y

)(
1−Dv−1 Bv−1

Cv−1 1 +Dv−1

)(
1 0
0 v

)(
y′ sv

−x′v−1 t

)
.



NON–GENERIC COMPONENTS OF THE EMERTON–GEE STACK FOR GL2 21

This shows that v | (Wj)1,1 if and only if uy′ − zx′ = 0, and v | (Wj)2,2 if
and only if txB + syC + (ty− sx)D = 0. The relation xy′ − yx′ = 0 implies
that Baj(z̃j) = D(x, x′) ∪D(y, y′). Since uy′ − zx′ = −x′ on D(x, x′) and
uy′ − zx′ = y′ on D(y, y′), uy′ − zx′ vanishes nowhere on Baj(z̃j). Further,
since txB + syC + (ty − sx)D equals yC − xD on D(x, x′) and xB + yD
on D(y, y′), txB + syC + (ty − sx)D vanishes on Baj(z̃j).

(7) Let kj = 0, (sj , w̃j) = (id, w0tη). Then

Xj = wjs
−1
j

(
1 0

Cv−1 1

)
sjwj =

(
1 Cv−1

0 1

)
with the variable C satisfying xx′ − xy′C = 0. Thus,

(det r̃j)Wj =

(
u z
x y

)(
1 Cv−1

0 1

)(
0 1
v 0

)(
y′ s
−x′ t

)
.

Hence, v | (Wj)1,1 if and only if u(x′ − y′C) = 0, and v | (Wj)2,2 if and only
if x(t+ sC) = 0. Note that u(x′− y′C) = 0 if and only if x′− y′C = 0, since
u = 1 on D(y) and we already know that x′ − y′C = 0 on D(x). Further,
x(t+ sC) = 0 if and only if x = 0, since x(t+ sC) = x on D(y′), whereas
on D(x′), x is a multiple of x(t+ sC) = xC.

(8) Let kj = 0, (sj , w̃j) = (id, tw0(η)). Then

Xj = wjs
−1
j

(
1 Bv−1

0 1

)
sjwj =

(
1 Bv−1

0 1

)
with the variable B satisfying xx′B − xy′ = 0. Thus,

(det r̃j)Wj =

(
u z
x y

)(
1 Bv−1

0 1

)(
1 0
0 v

)(
y′ s
−x′ t

)
.

Hence, v | (Wj)1,1 if and only if u(y′ − x′B) = 0, and v | (Wj)2,2 if and only
if x(s + tB) = 0. As in the previous case, u(y′ − x′B) = 0 if and only if
y′ − x′B = 0, and x(s+ tB) = 0 if and only if x = 0.

In order to compute Zj , we note that if a reduced scheme Z fits into a commutative
diagram

Baj(z̃j)Sj
Ũ(z̃)

Z

prj

surjection monomorphism

,

then Lemma 3.25 implies that the map Z ↪→ Ũ(z̃) is a closed immersion, and so
Zj = Z. The descriptions of Zj are now immediate except possibly the relations
satisfied by B,C,D when Sj = R, kj = 1 and (sj , w̃j) ∈ {(w0, w0tη), (id, tw0(η)).
The proof of Lemma 4.12(iii) shows that the only relations B,C,D satisfy with
respect to each other are given by setting (D2 +BC) equal to 0. □

4.1. Classification of Baj(z̃j)Sj
. We will henceforth restrict attention to the

schemes Baj(z̃j)Sj
for Sj ∈ {L,R} and their scheme–theoretic images. To sim-

plify notation, we will denote the maps pj |Baj(z̃j)Sj
, qj |Baj(z̃j)Sj

,prj |Baj(z̃j)Sj
sim-

ply as pj , qj ,prj respectively. Using Lemma 4.1, we find that when non–empty,
Baj(z̃j)Sj

, pj , qj ,prj admit one of the following descriptions up to isomorphism:
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(1) The scheme Baj(z̃j)Sj
is isomorphic to ProjF[x, y] × ProjF[x′, y′]. The

maps pj and qj are projections to the [x : y] and [x′ : y′] coordinates
respectively, while prj is a constant map. This happens when

Sj = L, w̃j = w0tη, and (⟨µj , α
∨⟩, sj) = (1, w0).

(2) The scheme Baj(z̃j)Sj
is isomorphic to ProjF[x, y] ×A1. The map pj is

projection to the [x : y] coordinate, the map qj is projection to the A1 factor
followed by inclusion into P1 given by mapping C 7→ [C : 1], and the map
prj is the projection to the A1 factor. This happens when

• Sj = L, w̃j = w0tη, and (⟨µj , α
∨⟩, sj) ̸= (1, w0); or

• Sj = L, w̃j = tw0(η), and (⟨µj , α
∨⟩, sj) = (0, id).

(3) The scheme Baj(z̃j)Sj
is isomorphic to SpecF[B,C,D]×ProjF[x, y]/(Dx−

Cy,Bx+Dy). The maps pj and qj are the same and given by projection
to the [x : y] coordinates, while prj extracts the variables B,C,D. This
happens when

• Sj = R, w̃j = w0tη, and (⟨µj , α
∨⟩, sj) = (1, w0); or

• Sj = R, w̃j = tw0(η), and (⟨µj , α
∨⟩, sj) = (1, id).

(4) The scheme Baj(z̃j)Sj
is isomorphic to A2. The map pj is a constant map,

qj is given by (C,C ′) 7→ [C ′ : 1], and prj extracts the variables C,C ′. This
happens when

• Sj = R, and ⟨µj , α
∨⟩ > 1; or

• Sj = R, w̃j = w0tη, and (⟨µj , α
∨⟩, sj) = (1, id); or

• Sj = R, w̃j = tw0(η), and (⟨µj , α
∨⟩, sj) = (1, w0).

(5) The scheme Baj(z̃j)Sj
is isomorphic to A1 × ProjF[x′, y′]. The map pj is

constant, the map qj is projection to [x′ : y′] coordinates, and the map prj
is the projection to the A1 factor. This happens when

Sj = R, and (⟨µj , α
∨⟩, sj) = (0, id).

We use the above classification to define the class Tj of Baj(z̃j)Sj . We will say
that Tj equals 1, 2, 3, 4 or 5 if Baj(z̃j)Sj is of the form described in (1), (2), (3), (4)
or (5) respectively.

4.2. A different decomposition of B̃a(z̃)S. In order to make certain cohomo-

logical computations easier, we now consider B̃a(z̃)S as a product of schemes in a
slightly different way and set up related notations. For each j with Tj ̸= 3, define

schemes B̃aj(z̃j)
I
Sj

and B̃aj(z̃j)
II
Sj

via the following isomorphism:

B̃aj(z̃j)Sj

∼−→ B̃aj(z̃j)
I
Sj

× B̃aj(z̃j)
II
Sj

(4.2)

(lj , κj , Xj , rj) 7→ (ljκj , κj), (Xj , rj).

The map pj : Baj(z̃j)Sj → P1 (resp. qj) induces a map B̃a(z̃)S → P1 via projection
to the Baj(z̃j)Sj

–factor under the isomorphism in (3.28). We denote this map by
pj (resp. qj) as well. Abusing notation further, via (4.2), we let pj also denote the

map B̃aj(z̃j)
I
Sj

→ P1 and qj the map B̃aj(z̃j)
II
Sj

→ P1.

Definition 4.3. Given a class tuple T = (Tj)j∈Z/fZ, let T be the set of sequences
t = (i− k, i− k + 1, . . . , i) of elements in Z/fZ where

• the length of the sequence, denoted l(t), is ≥ 2,
• Ti−k, Ti ̸= 3, and
• whenever l(t) ≥ 3, Ti−k+1 = · · · = Ti−1 = 3.
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It is evident from the definition that if Tj ̸= 3 for some j ∈ Z/fZ, then there exists
a sequence in T that starts with j and a sequence that ends with j. Furthermore,
whenever T ̸= ∅, every j ∈ Z/fZ shows up in at least one sequence in T. Note that
T depends on the data of z̃, s, µ, S since it depends on the the class tuple.

Definition 4.4. Suppose t = (i− k, . . . , i) ∈ T.

(i) Define B(t) to be the scheme

B̃ai−k(z̃i−k)
I
Si−k

× B̃ai−k+1(z̃i−k+1)Si−k+1
×

· · · × B̃ai−1(z̃i−1)Si−1
× B̃ai(z̃i)

II
Si
.

(ii) Define Y (t) to be the closed subscheme of B(t) obtained by setting lj−1 = rj
for each j ∈ {i− k + 1, . . . , i}. Denote by ∆(t) the map Y (t) ↪→ B(t).

(iii) Let

ZB̃(t)
def
= GL2 ×(Zi−k+1 ×GL2)× · · · × (Zi−1 ×GL2)× Zi.

Recall that Zj is the scheme–theoretic image of Baj(z̃j)Sj under prj , and
by Lemma 3.29, Zj ×GL2 is isomorphic to the the scheme–theoretic image

of B̃aj(z̃j)Sj
under p̃rj .

It is clear from the definitions that as long as T is non–empty, there exist obvious
isomorphisms

B̃a(z̃)S
∼−→
∏
t∈T

B(t),(4.5)

Ỹ η,τ (z̃)S
∼−→
∏
t∈T

Y (t)(4.6)

which induce an identification of the scheme–theoretic image of B̃a(z̃)S under prB̃ ,
with the scheme

∏
t∈T ZB̃(t). Thus, the map prB̃ induces proper and scheme–

theoretically dominant maps pr(t) : B(t) → ZB̃(t). Define Z(t) to be the scheme–
theoretic image of Y (t) under pr(t). There exists an obvious identification of∏

t∈T Z(t) with Z̃τ (z̃)S .

Definition 4.7. For j with Tj = 3, let Nj be the ideal of Γ(B̃aj(z̃j)Sj
) generated

by the functions B,C,D. There exists an obvious inclusion

Γ(B̃aj(z̃j)Sj
) ↪→ Γ(B̃a(z̃)S)

and if t = (i− k, . . . , i) ∈ T and j ∈ {i− k, . . . , i}∖ {i− k, i}, then also an inclusion

Γ(B̃aj(z̃j)Sj ) ↪→ Γ(B(t)).

Abusing notation, we let the ideals generated by the image of Nj under these
inclusions also be denoted Nj .

Let N (resp. N(t)) be the minimal ideal of Γ(B̃a(z̃)S) (resp. of Γ(B(t)))
containing Nj for each j with Tj = 3 (resp. for each j ∈ {i− k, . . . , i}∖ {i− k, i}).
We also let the image of N(t) under the obvious inclusion

Γ(B(t)) ↪→ Γ(B̃a(z̃)S)

be denoted by N(t).

Lemma 4.8. Let t = (i− k, . . . , i) ∈ T.
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(i) If (Ti−k, Ti) ̸∈ {(1, 1), (1, 5), (2, 1), (2, 5)}, then the map pr(t) induces an
isomorphism of Y (t) with Z(t).

(ii) Suppose Ti−k ∈ {1, 2} and Ti ∈ {1, 5}. If l(t) = 2, then the map Y (t) → Z(t)
induced by pr(t) is a P1–torsor. On the other hand, if l(t) > 2, then
dimY η,τ (t) = dimZ(t), the restriction of pr(t) to pr(t)−1 (Z(t)∖ V (N(t)))
is a monomorphism, and pr(t) induces a birational map from Y (t) to Z(t).

Proof. Since pr(t) is proper, it suffices to show that it restricts to a monomor-
phism on Y (t) unless Ti−k ∈ {1, 2} and Ti ∈ {1, 5}. Unpacking the definitions,
we find that pr(t) restricts to a monomorphism if and only if given the data of
{Xj}ij=i−k+1, {κj}i−1

j=i−k, the tuples {lj}i−1
j=i−k and {rj}ij=i−k+1 are uniquely deter-

mined after imposing the conditions lj−1 = rj for j ∈ {i− k + 1, . . . , i}. We make
the following observations:

• When Tj = 1, the data of Xj , κj imposes no constraints on lj , rj , which are
unrelated to each other.

• When Tj = 2, the data of Xj , κj imposes no constraints on lj , but completely
determines rj .

• When Tj = 3, Xj , κj do not completely determine lj or rj (except away from
the vanishing locus of Nj), but lj and rj determine each other completely.

• When Tj = 4, κj determines lj and Xj determines rj .
• When Tj = 5, κj determines lj but the data of Xj , κj imposes no constraints
on rj .

From these, the first part of the statement of the Lemma follows immediately. For the
second part, suppose t = (i− k, . . . , i) with (Ti−k, Ti) ∈ {(1, 1), (1, 5), (2, 1), (2, 5)}.
If l(t) = 2, then since li−k = ri ∈ P1 can take any value, Y (t) is a P1–torsor
over Z(t). Finally, the third bullet above implies that the restriction of pr(t) to
pr(t)−1 (Z(t)∖ V (N(t))) is a monomorphism. If l(t) > 2, Z(t)∖ V (N(t)) is readily
seen to be non–empty, implying that pr(t)) induces a birational map from Y (t) to
Z(t). □

By the same argument as above, we also obtain the following lemma.

Lemma 4.9. Suppose Tj = 3 for each j ∈ Z/fZ. The map π̃S restricts to a

monomorphism on π̃−1
S

(
Z̃τ (z̃)S ∖ V (N)

)
.

Definition 4.10. Let T∗ ⊂ T be the set of those t = (i− k, . . . , i) ∈ T satisfying
Ti−k ∈ {1, 2} and Ti ∈ {1, 5}.

Lemma 4.11. (Version of [LHMM, Lem. 4.2.3]) Let S ∈ {L,R}Z/fZ and t ∈ T.

(i) The schemes Baj(z̃j)Sj
and B(t) are local complete intersections over F.

Whenever non–empty, Baj(z̃j)Sj
has dimension 2.

(ii) When Tj = 3, the dualizing sheaf of Baj(z̃j)Sj
is OBaj(z̃j)Sj

. Thus, if

t = (i− k, . . . , i), the dualizing sheaf of B(t) is

p∗i−kO(−2)⊗ q∗i O(−2).

Proof. First, suppose Tj = 3. Let ι : Baj(z̃j)Sj ↪→ P1 ×A3 be the embedding given
by ([x : y], (B,C,D)) 7→ ([x : y], (B,C,D)). Set t = x/y. Below is an open cover
of P1 ×A3 along with local generators of the ideal sheaf I whose vanishing locus
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gives Baj(z̃j)Sj
:

D(y) = SpecF[B,C,D, t], I(D(y)) = (Dt− C,Bt+D);

D(x) = SpecF[B,C,D, t−1], I(D(x)) = (D − Ct−1, B +Dt−1).

The given generators clearly describe a regular sequence on each chart, and so
the first statement holds in this case. The sheaf

∧2
ι∗I is an invertible sheaf freely

generated on D(y) ∩Baj(z̃j)Sj
by (Dt− C) ∧ (Bt+D), and on D(x) ∩Baj(z̃j)Sj

by (D − Ct−1) ∧ (B + Dt−1). With these generators, the transition map from
D(y) ∩ Baj(z̃j)Sj

to D(x) ∩ Baj(z̃j)Sj
is given by multiplication by t2. Hence,

∧2(ι∗I)∨ ∼= p∗jO(2), implying that the dualizing sheaf of Baj(z̃j)Sj
is p∗jO(2) ⊗

p∗jO(−2) ∼= OBaj(z̃j)Sj
.

The rest of the first and second statements is now immediate. □

Lemma 4.12. (Version of [LHMM, Lem. 4.2.5]) Let ϵj , δj ∈ Z and

F := p∗jOP1(−1)δj ⊗OBaj(z̃j)Sj
q∗jOP1(−1)ϵj

be a sheaf on Baj(z̃j)Sj .
Suppose Tj ̸= 3 and ϵj , δj ∈ {0, 1}. Then the cohomology groups of F admit the

following descriptions as Γ(Baj(z̃j)Sj
)–modules:

(i) If Tj = 1, then

RiΓF ∼=

{
Γ(Baj(z̃j)Sj

) if i = 0, ϵj = δj = 0;

0 otherwise.

(ii) If Tj = 2, then

RiΓF ∼=

{
Γ(Baj(z̃j)Sj ) if i = 0, ϵj ∈ {0, 1}, δj = 0;

0 otherwise.

(iii) If Tj = 4, then

RiΓF ∼=

{
Γ(Baj(z̃j)Sj

) if i = 0, ϵj , δj ∈ {0, 1};
0 otherwise.

(iv) If Tj = 5, then

RiΓF ∼=

{
Γ(Baj(z̃j)Sj

) if i = 0, ϵj = 0, δj ∈ {0, 1};
0 otherwise.

Suppose Tj = 3 and ϵj , δj ∈ {−1, 0, 1}. The following are true:

(i) If ϵj + δj = 0, then RiΓF = 0 for i ̸= 0, and

R0ΓF ∼= Γ(Baj(z̃j)Sj ).

(ii) If ϵj + δj ∈ {−1, 1}, then RiΓF = 0 for i ̸= 0, and

R0ΓF ∼= Γ(Baj(z̃j)Sj
)[e1, e2]/(De1 − Ce2, Be1 +De2).

(iii) If ϵj + δj = −2, then RiΓF = 0 for i ̸= 0, and R0ΓF ∼=

Γ(Baj(z̃j)Sj
)[e1, e2, e3]/(De1 − Ce2, Be1 +De2, Be1 + Ce3).
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(iv) Finally, if ϵj + δj = 2, then

RiΓF ∼=


Γ(Baj(z̃j)Sj

) if i = 0,

Γ(Baj(z̃j)Sj
)/Nj if i = 1,

0 if i ̸∈ {0, 1}.

Proof. The proof for classes 1, 2, 4 and 5 follows from the following observations:

• RΓ(An,O) is concentrated in degree 0.
• RΓ(P1,O(−n)) is zero if n = 1 and free of rank 1 over Γ(P1,O) = F
concentrated in degree 0 if n = 0.

In particular, by Künneth formula, we have:

• When Tj = 1, RiΓF = ⊕m+n=iH
m(P1,O(−δj))⊗Hn(P1,O(−ϵj)).

• When Tj = 2, RiΓF = ⊕m+n=iH
m(P1,O(−δj))⊗Hn(A1,O).

• When Tj = 4, RiΓF = ⊕m+n=iH
m(A1,O)⊗Hn(A1,O).

• When Tj = 5, RiΓF = ⊕m+n=iH
m(A1,O)⊗Hn(P1,O(−ϵj)).

Finally, suppose Tj = 3. Letting t denote x/y, Baj(z̃j)Sj
admits an open cover

by schemes SpecF[t−1, C] and SpecF[t, B]. Let ι1 : F[t−1, C] ↪→ F[t±, C] be the
obvious inclusion, and let ι2 : tϵ+δF[t, B] ↪→ F[t±, C] be given by tn 7→ tn, B 7→
−Ct−2. Therefore, Rprj∗F ∼= Rprj∗(p

∗
jOP1(−1)δj+ϵj ) is computed by the Čech

complex

F[t−1, C]⊕ tδj+ϵjF[t, B] → F[t±, C]

where the differential maps (f, g) 7→ ι1(f)− ι2(g). This complex is quasi-isomorphic
to the following complex of F[B,C,D]/(D2 +BC) modules:

tδj+ϵjF[t, Ct−2] → F[t±, C]/F[t−1, C],(4.13)

where B acts via multiplication by −Ct−2, C acts via multiplication by C, and D
acts via multiplication by Ct−1. Note that, as F–vector spaces,

tϵj+δjF[t, Ct−2] ∼=
⊕
m≥0,

n≥−2m+δj+ϵj

FCmtn, and

F[t±, C]/F[t−1, C] ∼=
⊕
m≥0,
n>0

FCmtn.

We make the following observations about the kernel and cokernel of the map in
(4.13).

• When δj + ϵj = 0, the kernel is free of rank 1 over F[B,C,D]/(D2 +BC),
which thus gives the global functions, while the cokernel is 0.

• When δj + ϵj = −1, the kernel is generated over F[B,C,D]/(D2 +BC) by
{1, t−1} which satisfy the relations D · 1−C · t−1 = 0 and B · 1+D · t−1 = 0.
The cokernel is clearly 0.

• When δj + ϵj = 1, the kernel is generated over F[B,C,D]/(D2 + BC) by
{C,Ct−1} which satisfy the relations D ·C−C ·Ct−1 = 0 and B ·C+D ·Ct−1.
The cokernel is clearly 0.

• When δj + ϵj = −2, the kernel is generated over F[B,C,D]/(D2 +BC) by
{1, t−1, t−2} which satisfy the relations D ·1−C · t−1 = 0, B ·1+D · t−1 = 0
and B · 1 + C · t−2 = 0. The cokernel is clearly 0.
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• When δj + ϵj = 2, the kernel is free of rank 1 over F[B,C,D]/(D2 +BC)
with generator C. A generator of the cokernel is given by the class of t
while B · t, C · t,D · t give the zero class in the cokernel. In particular, the
cokernel is isomorphic to F and supported at the vanishing locus of Nj .

The assertions in the Lemma follow immediately. □

Remark 4.14. In the proof of Lemma 4.12 above when Tj = 3, one verifies
immediately that when δj + ϵj = −1, the pullbacks of the sections x and y of OP1(1)
along pj (= qj) are 1 and t−1 respectively. When δj + ϵj = −2, the pullbacks of the
sections x2, xy and y2 of OP1(2) along pj are 1, t−1 and t−2 respectively.

Lemma 4.15. The scheme–theoretic image of B̃a(z̃)S is a closed subscheme of

Ũ(z̃) that identifies naturally with

Spec prB̃∗(OB̃a(z̃)S
) ∼= SpecΓ(B̃a(z̃)S).

Similarly, for t ∈ T, ZB̃(t) identifies naturally with

Spec pr(t)∗OB(t)
∼= SpecΓ(B(t)).

Proof. The only thing to check is that the global functions on the scheme–theoretic

images of B̃a(z̃)S and B(t) are the same as the global functions on B̃a(z̃)S and B(t)
respectively. Tables 1 and 2 give descriptions of global functions on the scheme–
theoretic image of Baj(z̃j)Sj

under prj and Lemma 4.12 gives a description of
Γ(Baj(z̃j)Sj ). The descriptions match and so, an application of Lemma 3.29 finishes
the proof. □

Lemma 4.16. (Version of [LHMM, Cor. 4.2.10]) Denoting the restriction of prB̃
to B̃a(z̃)S also by prB̃, consider the commutative diagram

Ỹ η,τ (z̃)S B̃a(z̃)S

Ũ(z̃)

pr

∆S

prB̃

The following are true:

(i) Whenever i > 0, RiprB̃∗OB̃a(z̃)S
= 0.

(ii) The map OŨ(z̃) → prB̃∗OB̃a(z̃)S
is a surjection.

(iii) If I(z̃) is the ideal sheaf defining the closed immersion ∆S, then
• coker(OŨ(z̃) → pr∗OỸ η,τ (z̃)S

) = R1prB̃∗I(z̃), and
• Ripr∗OỸ η,τ (z̃)S

= Ri+1prB̃∗I(z̃) for i > 0.

Proof. Vanishing of RiprB̃∗OB̃a(z̃)S
= 0 if i > 0 follows from Lemma 4.12. The

map OŨ(z̃) → prB̃∗OB̃a(z̃)S
is a surjection by Lemma 4.15. Finally, the long exact

sequence in cohomology obtained from the short exact sequence

0 → I(z̃) → O
B̃a(z̃)S

→ (∆S)∗OỸ η,τ (z̃)S
→ 0

of sheaves on B̃a(z̃)S implies the remaining statements. □

Lemma 4.17. (Version of [LHMM, Lem. 4.2.11]) For each j ∈ Z/fZ, there exists
a map

sj : q
∗
jOP1(−1)⊗O

B̃a(z̃)S
p∗j−1OP1(−1) −→ O

B̃a(z̃)S
,
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so that Ỹ η,τ (z̃)S is a complete intersection defined by the zero locus of {sj}j∈Z/fZ.
If t = (i− k, . . . , i) ∈ T, sj for j ∈ {i− k + 1, . . . , i} can be viewed as a map

q∗jOP1(−1)⊗OB(t)
p∗j−1OP1(−1) −→ OB(t)

and Y (t) is a complete intersection defined by the zero locus of si−k+1, . . . , si.

Proof. Proof for Ỹ η,τ (z̃)S is identical to that of [LHMM, Lem. 4.2.11]. Since

dim Ỹ η,τ (z̃)S =
∑

t∈T dimY (t) whenever T is non–empty, Y (t) is forced to be a
complete intersection (in fact, smooth by Lemma 3.14) as well. □

Corollary 4.18. Let

E def
=

⊕
j∈Z/fZ

q̃∗jOP1(−1)⊗O
B̃a(z̃)S

p̃∗j−1OP1(−1)

and for t = (i− k, . . . , i) ∈ T, let

E(t) def
=

i⊕
j=i−k+1

q∗jOP1(−1)⊗OB(t)
p∗j−1OP1(−1).

The Koszul resolutions Kos•
(
E , (sj)j∈Z/fZ

)
and Kos•

(
E(t), (sj)ij=i−k+1

)
yield exact

sequences

0 →
f∧
E →

f−1∧
E · · · →

1∧
E → I(z̃) → 0,

0 → ω
B̃a(z̃)S

→ ω
B̃a(z̃)S

⊗
1∧
E∨ → · · · → ω

B̃a(z̃)S
⊗

f∧
E∨ → (∆S)∗ωỸ η,τ (z̃)S

→ 0,

0 → ωB(t) → ωB(t) ⊗
1∧
E(t)∨ → · · · → ωB(t) ⊗

l(t)−1∧
E(t)∨ → ∆(t)∗ωY (t) → 0.

In particular, there exist three cohomological spectral sequences living in the second
quadrant given by

Ep,q
1 = RqΓ

(
1−p∧

E

)
=⇒ Rp+qΓ (I(z̃)) ,

Ep,q
1 = RqΓ

(
ω
B̃a(z̃)S

⊗
f+p∧

E∨

)
=⇒ Rp+qΓ

(
ωỸ η,τ (z̃)S

)
, and

Ep,q
1 = RqΓ

ωB(t) ⊗
l(t)−1+p∧

E(t)∨
 =⇒ Rp+qΓ

(
ωY (t)

)
.

Proof. The first exact sequence follows immediately from Lemma 4.17. For the
second and third, note that for each j ∈ Z/fZ, resp. each j ∈ {i − k + 1, . . . , i},
q∗jOP1(−1)⊗ p∗j−1OP1(−1) is the ideal sheaf of an effective Cartier divisor. Further,

Ỹ η,τ (z̃)S is irreducible being a GL
Z/fZ
2 –torsor over the irreducible component Y η,τ

S

of Y η,τ
F , and therefore, so is Y (t). Thus, [Kov, Prop. 6.10(iii)] gives the second exact

sequence. □

Lemma 4.19. The following are true:
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(i) (Version of [LHMM, Cor. 4.2.12]) For 0 < a ≤ f , b ≥ a, RbΓ (
∧a E) ̸= 0 if

and only if a = b = f and Tj = 3 for each j ∈ Z/fZ. In this special case,

RfΓ

(
f∧
E

)
∼= Γ(B̃a(z̃)S)/N.

(ii) Suppose Tj = 3 for each j ∈ Z/fZ. Then

RbΓ

(
ω
B̃a(z̃)S

⊗
a∧
E∨

)
̸= 0 ⇐⇒ 0 ≤ a ≤ f, b = 0.

In particular, R0Γ(ωỸ η,τ (z̃)S
) is the cokernel of the map

R0Γ

(
f−1∧

E∨

)
−→ R0Γ

(
f∧
E∨

)
(4.20)

in the E1 page of the second spectral sequence in Corollary 4.18.
(iii) Suppose t = (i− k, . . . , i) ∈ T∗ with l(t) ≥ 3. Then

RbΓ

(
ωB(t) ⊗

a∧
E(t)∨

)
̸= 0 ⇐⇒ 0 ≤ a ≤ l(t)− 3, b = 2.

In particular, R0Γ(ωY (t)) is the cokernel of the map

R2Γ

ωB(t) ⊗
l(t)−4∧

E(t)∨
 −→ R2Γ

ωB(t) ⊗
l(t)−3∧

E(t)∨
(4.21)

in the E1 page of the third spectral sequence in Corollary 4.18.

Proof. First, note that

a∧
E =

⊕
ϵ

 ⊗
j∈Z/fZ

q̃∗jO(−1)ϵj ⊗O
B̃a(z̃)S

p̃∗jO(−1)ϵj+1


where the direct sum is over the set {ϵ ∈ {0, 1}Z/fZ |

∑
ϵj = a}. By Lemma 4.12,

RΓ
(
q̃∗jO(−1)ϵj ⊗O

B̃a(z̃)S
p̃∗jO(−1)ϵj+1

)
is concentrated in degree 0 unless Tj = 3 and ϵj = ϵj+1 = 1, when it is concentrated
in degrees 0 and 1. The first statement then follows from the Künneth formula.

When Tj = 3 for all j ∈ Z/fZ, Lemma 4.11 shows that the dualizing sheaf of

B̃a(z̃)S is trivial. Further, Lemma 4.12 shows that for each j, the cohomologies
of p∗jOP1 , p∗jOP1(1) and p∗jOP1(2) are all concentrated in degree 0. The same is
therefore true for ∧aE∨ for any a. The second point in the statement of the Lemma
thus holds true.

Finally, given t as in the third point, Lemma 4.11 implies that

ωB(t) ⊗
a∧
E(t)∨ ∼=

⊕
ϵ

K(ϵ)
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where

K(ϵ) := p∗i−kO(−1)2−ϵi−k+1 ⊗

 i−1⊗
j=i−k+1

p̃∗jO(ϵj + ϵj+1)

⊗ q∗i O(−1)2−ϵi(4.22)

and the direct sum is over {ϵ = (ϵj)
i
j=i−k+1 ∈ {0, 1}l(t)−1 |

∑i
j=i−k+1 ϵj = a}. Since

Ti−k ∈ {1, 2} and Ti ∈ {1, 5},

B̃ai−k(z̃i−k)
I
Si−k

∼= P1 ×GL2, and B̃ai(z̃i)
II
Si

∼= Zi ×P1.

Therefore, RΓ (K(ϵ)) is non–vanishing if and only if ϵi−k+1 = ϵi = 0. In particular,
RΓ
(
ωB(t) ⊗

∧a E∨) is non–vanishing if and only if a ≤ l(t)− 3. Assume now that
RΓ (K(ϵ)) is non–vanishing. Since the cohomologies of p∗i−kO(−2) and q∗i O(−2) are
both concentrated in degree 1, and that of p̃∗jO(ϵj+ϵj+1) for j ∈ {i−k+1, . . . , i−1}
is concentrated in degree 0 by Lemma 4.12, RbΓ (K(ϵ)) ̸= 0 if and only if b = 2. □

Corollary 4.23. (i) If i > 0, RiΓ(I(z̃)) ̸= 0 if and only i = 1 and Tj = 3 for

each j ∈ Z/fZ. In this case, it is supported at V (N) ⊂ Spec Γ(B̃a(z̃)S) and

is free of rank 1 over Γ(B̃a(z̃)S)/N .
(ii) Suppose Tj = 3 for each j ∈ Z/fZ. The group RiΓ(ωỸ η,τ (z̃)S

) vanishes

when i > 0 and has support

Z̃τ (z̃)S ⊂ Spec Γ(B̃a(z̃)S)

when i = 0.
(iii) Suppose t ∈ T∗ and l(t) ≥ 3. The group RiΓ(ωY (t)) vanishes when i > 0

and has support Z(t) ⊂ Spec Γ(B(t)) when i = 0.

Proof. The assertions about vanishing of higher cohomologies and support of
R1Γ(I(z̃)) follow immediately from Corollary 4.18 and Lemma 4.19.

By Lemma 4.9, resp. Lemma 4.8(ii), Z̃τ (z̃)S ∖ V (N), resp. Z(t) ∖ V (N(t)),

is isomorphic to its smooth preimage in Ỹ η,τ (z̃)S , resp. in Y (t). Therefore, the

dualizing sheaf on Z̃τ (z̃)S ∖V (N), resp. Z(t)∖V (N(t)), is non-zero and supported
everywhere. Since the dualizing sheaf is obtained by restricting the quasicoherent
sheaf associated to the module

R0Γ
(
ωỸ η,τ (z̃)S

)
, resp. R0Γ(ωY (t)),

we get the desired statement on the support of this module. □

Proposition 4.24. (i) Suppose Tj = 3 for each j ∈ Z/fZ. The rank of

R0Γ
(
ωỸ η,τ (z̃)S

)
at the point (z̃j)j ∈ Z̃τ (z̃)S is ≥ 3.

(ii) Suppose t = (i − k, . . . , i) ∈ T∗ with l(t) ≥ 4. The rank of R0Γ(ωY (t)) at
every point in V (N(t)) ⊂ Spec Γ(B(t)) is ≥ 2.

Proof. We first deal with the case when Tj = 3 for each j ∈ Z/fZ. In this setting,
the domain of the map (4.20) admits a description as the global sections of the
structure sheaf if f = 1, and of

⊕
j∈Z/fZ

 ⊗
i∈{j−1,j}

p∗iOP1(1)

⊗

 ⊗
i ̸=j−1,j

p∗iOP1(2)
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if f > 1. The codomain admits a description as the global sections of
⊗

i∈Z/fZ p∗iOP1(2).

By the explicit description of the Koszul complex, the map (4.20) is given by mapping
the function 1 to s0 if f = 1, and tensoring a section of

Γ

 ⊗
i∈{j−1,j}

p∗iOP1(1)

⊗

 ⊗
i ̸=j−1,j

p∗iOP1(2)

 ∼=

 ⊗
i∈{j−1,j}

Γ(p∗iOP1(1))

⊗

 ⊗
i̸=j−1,j

Γ(p∗iOP1(2))

 ,(4.25)

with ±sj ∈ Γ
(
p∗j−1O(1)⊗ q∗jO(1)

)
if f > 1. If f > 1, denote by sj the restriction

of the map (4.20) to (4.25) above.
For each j ∈ Z/fZ, denote the pullback of the projective coordinates [x : y] on

Baj(z̃j)Sj to B̃a(z̃)S by [xj : yj ]. In light of Remark 4.14, for each j ∈ Z/fZ, we
can (and do) describe the space of global sections of p∗jO(1) as a module generated

by {xj , yj}, and that of p∗jO(2) as a module generated by {x2
j , xjyj , y

2
j }.

The preimage in B̃a(z̃)S of the point (z̃j)j is cut out by setting κj = id and
Xj = id for each j ∈ Z/fZ. Consider the map (4.20) after specialization to (z̃j)j ,
since cokernel commutes with base change. Using that the preimage of (z̃j)j in

Ỹ η,τ (z̃)S is cut out by setting [xj−1 : yj−1] = [xj : yj ] for each j, we find that the
section sj is equivalent to

xj−1 ⊗ yj − yj−1 ⊗ xj

on restriction to this preimage. Suppose first that f = 1. We have s0 ≡ 0, and so,
the rank of the cokernel is the rank of the codomain, which is 3. Now, suppose
f > 1. For j ∈ Z/fZ, after specialization, the space in (4.25) and the codomain of
(4.20) can be identified with ⊗

i∈{j−1,j}

F[xi, yi]

⊗

 ⊗
i ̸=j−1,j

F[x2
i , xiyi, y

2
i ]

 and
⊗

i∈Z/fZ

F
[
x2
i , xiyi, y

2
i

]
respectively. The image of the map sj is the span of those ⊗iai for which aj−1 ⊗ aj
lies in {αj , βj , γj , δj}, where

αj := x2
j−1 ⊗ xjyj − xj−1yj−1 ⊗ x2

j ,

βj := x2
j−1 ⊗ y2j − xj−1yj−1 ⊗ xjyj ,

γj := xj−1yj−1 ⊗ xjyj − y2j−1 ⊗ x2
j ,

δj := xj−1yj−1 ⊗ y2j − y2j−1 ⊗ xjyj .(4.26)

We claim that the F–span of {⊗ix
2
i , x

2
0 ⊗ y21 ⊗ (⊗i ̸∈{0,1}x

2
i ),⊗iy

2
i }, denoted V ,

intersects trivially with the image of (4.20) (after specialization). Moreover, it
remains 3–dimensional after passing to the cokernel, showing that the cokernel has
rank ≥ 3. To see this, take for a basis of the codomain the set

B := {⊗iai|ai ∈ {x2
i , xiyi, y

2
i }}.

For j ∈ Z/fZ, we say that b = ⊗iai ∈ B involves cross terms in j if

(aj−1, aj) ̸∈ {(x2
j−1, x

2
j ), (y

2
j−1, y

2
j )}.
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Note that the image of sj lies in the span of basis elements with cross terms in
j. Suppose v = ⊕b∈Bcbb ∈ V is in the image. For b ∈ {⊗ix

2
i ,⊗iy

2
i }, cb is 0

because b does not involve any cross terms. The only thing to check then is that
v = x2

0 ⊗ y21 ⊗ (⊗i ̸∈{0,1}x
2
i ) ∈ B is not in the image.

Assume otherwise. Suppose v = u + w with u ∈
∑

j ̸∈{1,2} Im sj and w ∈
Im s1 + Im s2. Since Im sj is written purely in terms of basis elements with cross
terms in j and v does not involve any cross terms in j ̸∈ {1, 2}, u can be taken to be
0. When f = 2, Im s1 = Im s2, and neither contains v, giving rise to a contradiction.
When f ≥ 3, the fact that v ∈ B ∩ Im s1 + Im s2 allows us to simply assume that
f = 3 and v = x2

0 ⊗ y21 ⊗ x2
2. The space Im s1 + Im s2 is generated by elements in

the set G := {α1, β1, γ1, δ1}⊗ {x2
2, x2y2, y

2
2} ∪ {x2

0, x0y0, y
2
0}⊗ {α2, β2, γ2, δ2}. Since

v involves cross terms in j ∈ {1, 2}, v can be written as a linear combination of the
elements of

G(1) := G ∖ {α1 ⊗ x2
2, β1 ⊗ y22 , γ1 ⊗ x2

2, δ1 ⊗ y22 , x
2
0 ⊗ α2, x

2
0 ⊗ β2, y

2
0 ⊗ γ2, y

2
0 ⊗ δ2}.

Using the relation β1 ⊗ x2
2 = x0y0 ⊗ α2 + α1 ⊗ x2y2 − x2

0 ⊗ γ2, we can further write
v as a linear combination of the elements of G(2) := G(1) ∖ {β1 ⊗ x2

2}. Since the only
element of G(2) involving the basis element v is x2

0 ⊗ γ2, we can write v + x2
0 ⊗ γ2 =

x2
0 ⊗ x1y1 ⊗ x2y2 as a linear combination of elements in G(3) := G(2) ∖ {x2

0 ⊗ γ2}.
The only element of G(3) involving the basis element x2

0 ⊗ x1y1 ⊗ x2y2 is α1 ⊗ x2y2.
Therefore x2

0⊗x1y1⊗x2y2−α1⊗x2y2 = x0y0⊗x2
1⊗x2y2 is a linear combination of

elements in G(4) := G(3) ∖ {α1 ⊗x2y2}. Repeating the procedure again, we find that
x0y0 ⊗x2

1 ⊗x2y2 −x0y0 ⊗α2 = x0y0 ⊗x1y1 ⊗x2
2 is a linear combination of elements

in G(5) := G(4) ∖ {x0y0 ⊗ α2}. But this is impossible as none of the elements in
G(5) can be expressed as a linear combination of elements in B with a non–trivial
coefficient of x0y0 ⊗ x1y1 ⊗ x2

2, since we have removed both x0y0 ⊗ α2 and β1 ⊗ x2
2

from the allowed set of generators.
Next, we move on to the case when t = (i − k, . . . , i) ∈ T∗ with l(t) ≥ 4. The

proof in this case is very similar to the previous one with slightly more care needed
for describing explicitly the map (4.21), and for showing that the cokernel has rank
≥ 2 over all of V (N(t)) instead of at one finite type point.

Let J = {i− k + 2, . . . , i− 1}. For l ∈ J , define

ϵl = (ϵlj)
i
j=i−k+1 ∈ {0, 1}l(t)−1

such that ϵli−k+1 = ϵli = ϵll = 0 and for j ∈ J ∖ {l}, ϵlj = 1. Letting K(ϵj) be the
sheaf defined in (4.22), we have

⊕
j∈J

RΓ0
(
K(ϵj)⊗ ω∨

B(t)

)
∼= R2Γ

(
ωB(t)

)
⊗

⊕
j∈J

RΓ0
(
K(ϵj)⊗ ω∨

B(t)

)
∼=
⊕
j∈J

R2Γ
(
K(ϵj)

) ∼= R2Γ

ωB(t) ⊗
l(t)−4∧

E(t)∨
 ,

where the first isomorphism follows from R2Γ
(
ωB(t)

) ∼= Γ(B(t)), the second by the
Künneth formula, and the third is induced by the embedding⊕

j∈J

K(ϵj) ↪→ ωB(t) ⊗
l(t)−4∧

E(t)∨,
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and uses the fact that all cohomology groups of O(−1) on P1 vanish.
Next, let ϵ = (ϵj)

i
j=i−k+1 be such that ϵi−k+1 = ϵi = 0 and for j ∈ {i − k +

2, . . . , i− 1}, ϵj = 1. As before, the inclusion

K(ϵ) ↪→ ωB(t) ⊗
l(t)−3∧

E(t)∨

and Künneth formula induce isomorphisms

RΓ0
(
K(ϵ)⊗ ω∨

B(t)

)
∼= R2Γ

(
ωB(t)

)
⊗RΓ0

(
K(ϵ)⊗ ω∨

B(t)

)
∼= RΓ2 (K(ϵ)) ∼= R2Γ

ωB(t) ⊗
l(t)−3∧

E(t)∨
 .

By functoriality of the cup product underlying the Künneth isomorphism, the
map (4.21) corresponds to a map⊕

j∈J

RΓ0
(
K(ϵj)⊗ ω∨

B(t)

)
(sj)j∈J−−−−−→ RΓ0

(
K(ϵ)⊗ ω∨

B(t)

)
(4.27)

where for each j ∈ J , the map sj is given, upto a sign, by tensoring with the section

sj ∈ Γ
(
p∗j−1O(1)⊗ q∗jO(1)

)
considered in Lemma 4.17.

As before, for each j ∈ J ∪ {i− k + 1}, we denote the pullback of the projective
coordinates [x : y] on Baj(z̃j)Sj to Ba(t) by [xj : yj ], and describe the space of
global sections of p∗jO(1) as a module generated by {xj , yj}, and that of p∗jO(2) as

a module generated by {x2
j , xjyj , y

2
j }. We now describe a change of coordinates on

{[xj : yj ]}i−1
j=i−k+1.

Let κj ∈ GL2(B(t)) be the pullback of the universal point of the copy of GL2 in

B̃aj(z̃j). We define matrices Cj ∈ GL2(B(t)) for each j ∈ J∪{i−k+1} inductively by
setting Ci−k+1 = id and for j ∈ J , Cj = κj−1Cj−1. Set [x

new
j : ynewj ] := [xj : yj ]Cj .

For each j ∈ J , the relation

[xnew
j−1 : ynewj−1]C

−1
j−1κ

−1
j−1 = [xj−1 : yj−1]κ

−1
j−1 = [xj : yj ] = [xnew

j : ynewj ]C−1
j

is thus equivalent to

[xnew
j−1 : ynewj−1] = [xnew

j : ynewj ].

Therefore, for each j ∈ J , we can (and do) take sj to be the section xnew
j−1 ⊗ ynewj −

ynewj−1 ⊗ xnew
j .

Since cokernel commutes with base change, we consider the map (4.27) mod N(t).
Abusing notation, we rename xnew

j and ynewj simply as xj and yj respectively. From
the explicit description of K(ϵ) and Lemma 4.12, one sees that the codomain of
(4.27) mod N(t) admits an isomorphism to

F [xi−k+1, yi−k+1]⊗

 ⊗
j∈J∖{i−1}

F
[
x2
j , xjyj , y

2
j

]⊗ F [xi−1, yi−1] .

As observed in the proof of (i), the image of (4.27) mod N(t) intersects trivially
with the two–dimensional F–subspace generated by

{xi−k+1 ⊗ (
⊗

j∈J∖{i−1} x
2
j )⊗ xi−1, yi−k+1 ⊗ (

⊗
j∈J∖{i−1} y

2
j )⊗ yi−1}.
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This finishes the proof. □

Proposition 4.28. (Version of [LHMM, Prop. 3.3.14]) For i > 0

Ripr∗OỸ η,τ
S

= 0.

Proof. Since the codomain of prB̃ is affine, RprB̃∗I(z̃) is the quasicoherent sheaf
associated to RΓ(I(z̃)). The proof is then immediate from Lemma 4.16 and Corollary
4.23. □

Proposition 4.29. Suppose dim Ỹ η,τ (z̃)S = dim Z̃τ (z̃)S and that Tj ̸= 3 for some
j ∈ Z/fZ. Then, Rpr∗ωỸ η,τ (z̃)S

is concentrated in degree 0 and is an invertible

sheaf on Z̃τ (z̃)S if and only if for each t ∈ T∗, l(t) = 3. The locus in Z̃τ (z̃)S where
the rank of R0pr∗ωỸ η,τ (z̃)S

is ≥ 2 is precisely⋃
{t∈T∗|l(t)>3}

V (N(t)).

Proof. Since the codomain of pr is affine, Rpr∗ωỸ η,τ (z̃)S
is the sheaf associated to the

module RΓ(ωỸ η,τ (z̃)S
), with support necessarily contained in the scheme–theoretic

image Z̃τ (z̃)S of Ỹ η,τ (z̃)S . By (4.6) and the Künneth formula, we have

RnΓ
(
ωỸ η,τ (z̃)S

)
=

⊕
(mt)t,

∑
mt=n

(⊗
t∈T

RmtΓ
(
ωY (t)

))
.

When t ∈ T ∖ T∗, Lemma 4.8 shows that Y (t) is isomorphic to its scheme–
theoretic image under pr(t). Since Y (t) is Gorenstein by Lemma 4.17, RΓ(ωY (t)) is
concentrated in degree 0 and of constant rank 1 on Z(t).

On the other hand, when t ∈ T∗, Lemma 4.8 shows that dim Ỹ η,τ (z̃)S =

dim Z̃τ (z̃)S implies that for each t ∈ T∗, l(t) ≥ 3. Corollary 4.23 thus shows
that RΓ(ωY (t)) is concentrated in degree 0. The same argument as in the previous
paragraph shows that RΓ(ωY (t)) has constant rank 1 on Z(t)∖ V (N(t)). If l(t) = 3,

Lemmas 4.12 and 4.19 imply that R0Γ(ωY (t)) is free of rank 1 over Γ(B(t)). An
application of Proposition 4.24 finishes the proof. □

Proposition 4.30. Suppose t = (i− k, . . . , i) ∈ T∗ with l(t) = 3. Then Z(t) is a
local complete intersection, with singular locus given precisely by V (N(t)).

Proof. When l(t) = 3, since R0Γ(ωY (t)) is supported on Spec Γ(B(t)) and the
support must be contained in Z(t) ⊂ Spec Γ(B(t)), we obtain an isomorphism

Z(t) ∼= SpecΓ(B(t)) ∼= GL2 ×(Zi−1 ×GL2)× Zi

where Zi is smooth and Zi−1
∼= F[B,C,D]/(D2+BC). The latter is a local complete

intersection, with the sheaf of differentials locally free of rank 2 away from the
vanishing locus of N(t) and of rank 3 on restriction to V (N(t)). □

Let Zτ,nm
S be the normalization of Zτ , as described in [ABI, Appendix A]. Since

Y η,τ
S is smooth, the map Y η,τ

S → Zτ
S factors through Zτ,nm

S and we have the following
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Cartesian diagram

(4.31)

Ỹ η,τ
S Z̃τ,nm

S Z̃τ
S

Y η,τ
S Zτ,nm

S Zτ
S

where the vertical arrows are GL
Z/fZ
2 –torsors and the scheme Z̃τ,nm

S is the normal-

ization of Z̃τ (z̃)S . It admits an open cover by the normalizations Z̃τ,nm(z̃)S of

Z̃τ (z̃)S .

Theorem 4.32. Suppose Ỹ η,τ
S

π̃S−−→ Z̃τ
S is birational. The following are true:

(i) The scheme Z̃τ (z̃)S is normal if and only if there exists j ∈ Z/fZ with
Tj ̸= 3.

(ii) The scheme Z̃τ,nm(z̃)S is Cohen–Macaulay and resolution–rational. It is
Gorenstein if and only if

• there exists j ∈ Z/fZ with Tj ̸= 3, and
• l(t) = 3 for each t ∈ T∗.

When these conditions are met, it is in fact a local complete intersection.

Proof. By properness of π̃S , it admits a Stein factorization

Ỹ η,τ
S

π̃nm

−−→ Spec π̃∗OỸ η,τ
S

∼= Z̃τ,nm
S → Z̃τ

S(4.33)

where Spec (π̃S)∗OỸ η,τ
S

∼= Z̃τ,nm
S because π̃S is birational with smooth domain.

Pulling back along the open immersion

Z̃τ,nm(z̃)S ↪→ Z̃τ,nm
S

gives the Stein factorization of pr:

pr : Ỹ η,τ (z̃)S
π̃nm

−−→ Spec pr∗OỸ η,τ (z̃)S
∼= Z̃τ,nm(z̃)S → Z̃τ (z̃)S

ι
↪−→ Ũ(z̃).

The corresponding map on sheaves is

OŨ(z̃) ↠ ι∗OZ̃τ (z̃)S
→ pr∗OỸ η,τ (z̃)S

(4.34)

with cokernel R1prB̃∗I(z̃) by Lemma 4.16(iii). Thus, the map Z̃τ,nm(z̃)S → Z̃τ (z̃)S
fails to be an isomorphism if and only if R1prB̃∗I(z̃) ̸= 0. An application of Corollary
4.23(i) finishes the proof of the first part.

For the second statement, the proof proceeds in the same way as [LHMM,
Thm. 4.6.6]. By Proposition 4.28,

Rpr∗OỸ η,τ (z̃)S
= OZ̃τ,nm(z̃)S

.(4.35)

Let ω•
Z̃τ,nm(z̃)S

be a dualizing complex of Z̃τ,nm(z̃)S . Then, by [Sta, Tag 0BZL],

ω•
Ỹ η,τ (z̃)S

:= (π̃nm)!ω•
Z̃τ,nm(z̃)S

https://stacks.math.columbia.edu/tag/0BZL


36 KALYANI KANSAL AND BEN SAVOIE

is a dualizing complex of Ỹ η,τ (z̃)S . We have

Rpr∗ω
•
Ỹ η,τ (z̃)S

∼= Rpr∗RHomOỸ η,τ (z̃)S
(OỸ η,τ (z̃)S

, ω•
Ỹ η,τ (z̃)S

)

∼= RHomOZ̃τ,nm(z̃)S
(Rpr∗OỸ η,τ (z̃)S

, ω•
Z̃τ,nm(z̃)S

)

∼= RHomOZ̃τ,nm(z̃)S
(OZ̃τ,nm(z̃)S

, ω•
Z̃τ,nm(z̃)S

)

∼= ω•
Z̃τ,nm(z̃)S

.

The first and last isomorphisms follow from the fact that sheaf homomorphisms
from the structure sheaf to any sheaf F are isomorphic to F , the second from
Grothendieck duality (see for e.g. [Sta, Tag 0AU3]) and the third from (4.35). The

scheme Z̃τ,nm(z̃)S is thus Cohen–Macaulay and resolution–rational by Corollary
4.23 and Proposition 4.28.

If Tj = 3 for each j ∈ Z/fZ, the cokernel of (4.34) is free of rank 1 over its

support by Corollary 4.23(i). Therefore, the rank of the normalization of Γ(Z̃τ (z̃)S)

is at most 2 after specialization to any point of Z̃τ (z̃)S . An identical argument

as in the proof of Corollary 4.23(ii) shows that the dualizing sheaf of Z̃τ,nm(z̃)S is
supported everywhere. Consideration of ranks in Proposition 4.24(i) thus implies

that Z̃τ,nm(z̃)S is not Gorenstein.
On the other hand, if Tj ̸= 3 for some j, then Lemma 4.8 shows that

Z̃τ (z̃)S ∖
⋃
t∈T∗

V (N(t))

is smooth. Thus, it only remains to prove the desired statements when T∗ ≠ ∅. In
this case, Propositions 4.29 and 4.30 settle the proof while showing that the singular
locus is precisely

⋃
t∈T∗ V (N(t)). □

Corollary 4.36. The versal ring at a point ρ ∈ Zτ
S(F) is not normal if and

only if it admits a lift to a point of Z̃τ (z̃)S for some z̃ = (z̃j) with each z̃j ∈
{w0tη, tw0(η)}s

−1
j vµj , such that Tj = 3 for each j ∈ Z/fZ and the lift lies in

V (N) ⊂ Z̃τ (z̃)S.

Proof. By the proof of Theorem 4.32, the versal ring at ρ is not normal if and only

if for some z̃ = (z̃j) with each z̃j ∈ {w0tη, tw0(η)}s
−1
j vµj , ρ lifts to a point of Z̃τ (z̃)S

that lies in the support of R1prB̃∗I(z̃). The desired statement then follows from
Corollary 4.23 along with the additional observation that being the cokernel of the

map in (4.34), R1prB̃∗I(z̃) is necessarily supported in Z̃τ (z̃)S ⊂ Ũ(z̃). □

Corollary 4.37. Suppose dimZτ
S = f . The versal ring at a point ρ ∈ Zτ

S(F) is

normal but not smooth if and only if it admits a lift to a point of Z̃τ (z̃)S for some
z̃ = (z̃j) with each z̃j ∈ {w0tη, tw0(η)}s

−1
j vµj , such that T∗ ̸= ∅, and the lift lies in⋃

t∈T∗

V (N(t)) ⊂ Z̃τ (z̃)S .

If the lift further lies in
⋃

{t∈T∗|l(t)>3} V (N(t)), then the versal ring is Cohen–

Macaulay but not Gorenstein, otherwise it is a local complete intersection.

Proof. Follows immediately from Propositions 4.29 and 4.30, and the proof of
Theorem 4.32(ii). □

https://stacks.math.columbia.edu/tag/0AU3
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Corollary 4.38. The stack Zτ
S is either normal or its non–normal locus is a closed

substack of codimension f whose preimage in Y η,τ
S also has codimension f . In the

non–normal case, the complement of the non–normal locus is a smooth open substack
isomorphic to its preimage in Y η,τ

S .

Proof. Suppose z̃ is such that Z̃τ (z̃)S is not normal. By Corollary 4.36, Tj = 3 for

each j ∈ Z/fZ and the non–normal locus is V (N) ⊂ Z̃τ (z̃)S ⊂ SpecΓ(B̃a(z̃)S).

Consider the nilpotent thickening of V (N) in Spec Γ(B̃a(z̃)S) cut out by the functions

B,C for each j. These functions give a regular sequence of length 2f in Γ(B̃a(z̃)S),
where the latter has dimension 6f . Therefore, V (N) has dimension 4f and its

codimension in Z̃τ (z̃)S is f .

The stability of V (N) under shifted-conjugation by GL
Z/fZ
2 follows from direct

computation and implies the descent to a closed substack of Zτ
S . Precisely, the locus

V (N) ⊂ SpecΓ(B̃a(z̃)S) ⊂ Ũ(z̃) is characterized by tuples of matrices (κj z̃j)j ∈
Ũ(z̃) with

(κj)j ∈ GL
Z/fZ
2 and z̃j =

(
v 0
0 v

)
for each j. Such tuples are evidently stable under GL

Z/fZ
2 –action.

Next, we note from the explicit description in Section 4.1 that the vanishing locus

of N in B̃a(z̃)S is isomorphic to∏
j∈Z/fZ

ProjF[xj , yj ]×
∏

j∈Z/fZ

GL2 .

Let κj denote the universal point of the copy of GL2 in the j-th factor. The preimage

of V (N) in Ỹ η,τ (z̃)S is cut out by setting

[xj : yj ] = [xj−1 : yj−1]κ
−1
j−1

for each j. Thus, we can describe this preimage exclusively in terms of [x0 : y0]
and {κj}j , and get rid of the variables [xj : yj ] for j ̸= 0. More precisely, setting
[x : y] := [x0 : y0] and

κ :=

f−1∏
j=0

κ−1
j =

(
a b
c d

)
,

the preimage of V (N) in Ỹ η,τ (z̃)S is isomorphic to the closed subscheme of
ProjF[x, y]×

∏
j GL2 obtained by setting [x : y] = [x : y]κ = [ax+cy : bx+dy]. This

is the same as setting bx2 + (d− a)xy − cy2 = 0, which cuts out a closed subscheme

of pure dimension 4f . Since the dimension of Ỹ η,τ (z̃)S is 5f , the codimension of
the preimage of V (N) is f . Finally, the complement of V (N) is isomorphic to its

smooth preimage in Ỹ η,τ (z̃)S by Lemma 4.9. □

Corollary 4.39. Suppose dimZτ
S = f , and Zτ

S is normal but not smooth. Writing
T as T(z̃) to indicate the dependence on z̃, let

d := min
z̃ s.t.

T(z̃)∗ ̸=∅

min
t∈T(z̃)∗

(l(t)− 1).

Then the singular locus in Zτ
S is a closed substack of codimension d with preimage in

Y η,τ
S of codimension d− 1. The smooth locus is isomorphic to its preimage in Y η,τ

S .



38 KALYANI KANSAL AND BEN SAVOIE

Proof. Suppose z̃ is such that Z̃τ (z̃)S is normal but not smooth. Equivalently, by
Corollary 4.37, T(z̃)∗ ̸= ∅. Let t = (i−k, . . . , i) ∈ T(z̃)∗. We note that if Tj ∈ {1, 2},
dim B̃aj(z̃j)

I
Sj

= dimGL2 +1; if Tj = 3, dim B̃aj(z̃j)Sj = dim(Zj × GL2); and if

Tj ∈ {1, 5}, dim B̃aj(z̃j)
II
Sj

= dimZj + 1. Therefore,

dimZB̃(t) = dimB(t)− 2.

Since a nilpotent thickening of V (N(t)) in ZB̃(t) is cut out by the functions B,C
for each j ∈ {i− k, . . . , i}∖ {i− k, i}, and these functions give a regular sequence
of length 2(l(t)− 2) in Γ(ZB̃(t)),

dimV (N(t)) = dimB(t)− 2− 2(l(t)− 2).

We also note that

dimZ(t) = dimY (t) = dimB(t)− (l(t)− 1),

where the first equality follows from the assumption dim Z̃τ (z̃)S = f , and the second
from Lemma 4.17. Thus, the codimension of V (N(t)) in Z(t) is l(t)− 1. Viewing

N(t) as an ideal in Γ(B̃a(z̃)S) instead, the same is thus true for the codimension

of V (N(t)) in Z̃τ (z̃)S . The fiber in Ỹ η,τ (z̃)S over each point of V (N(t)) is directly
seen to be isomorphic to P1 and so, the codimension of the preimage of V (N(t)) in

Ỹ η,τ (z̃)S is l(t)− 2.
The closed scheme V (N(t)) descends to a closed substack of Zτ

S of codimension
l(t)− 1 by the same argument as in Corollary 4.38 and the complement of⋃

z̃ s.t.
T(z̃)∗ ̸=∅

⋃
t∈T(z̃)∗

V (N(t))

is isomorphic to its preimage by Lemma 4.8(ii). The desired statements follow
immediately. □

5. Combinatorics of Serre weights, tame types and shapes

Let τ = η1 ⊕ η2 be a tame inertial type with implicit, fixed ordering of the
two characters (η1, η2). The paper [CEGSc] indexes irreducible components of the
moduli stack of Breuil–Kisin modules with descent data of tame type τ∨ by subsets
J ⊂ Z/fZ. The irreducible component indexed by J is denoted Cτ (J). In the
following Lemma, we set up a dictionary between the notation of [CEGSc] and this
article.

Lemma 5.1. Let τ∨ = η1 ⊕ η2 be a non–scalar principal series tame inertial type.
Suppose η1η

−1
2 =

∏
j∈Z/fZ ω

γj

j with γj ∈ [0, p − 1] for each j ∈ Z/fZ. Suppose

further that either γj ≤ (p− 1)/2 for each j ∈ Z/fZ, or γj < (p− 1)/2 for some
j ∈ Z/fZ.

Let M be the set, possibly empty, of maximal subsets {i − k, . . . , i} ⊂ Z/fZ
satisfying

(a) γi−k < (p− 1)/2,
(b) γi−k+1, . . . , γi ≥ (p− 1)/2 if k ̸= 1, and
(c) γi > (p− 1)/2.

Here, maximality is in the sense that the subset is not properly contained in another
subset satisfying the three conditions. Suppose either that 0 ∈ Z/fZ is not contained
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in any such subset, or γ0 < (p−1)/2. Then τ = τ(s, µ) where if A = {i−k, . . . , i} ∈
M , then (⟨µj , α

∨⟩, sj , sor,j) is

(γj + 1, w0, w0) if j = i− k,

(p− 1− γj , id, w0) if j ∈ A∖ {i− k, i},
(p− γj , w0, id) if j = i.

On the other hand, if j is not in any subset contained in M , then

(⟨µj , α
∨⟩, sj , sor,j) = (γj , id, id) .

In particular,

p− 2 > max
j∈Z/fZ

⟨µj , α
∨⟩.

Furthermore, Cτ∨
(Z/fZ) = Y η,τ

S , where S = (Sj)j∈Z/fZ is as follows: If A =
{i − k, . . . , i} ∈ M , then Sj = L for j ∈ A ∖ {i} while Si = R. If j is not in any
subset contained in M , then Sj = R.

Proof. We first make some general observations for τ∨ ∼= η1 ⊕ η2. Suppose

τ ∼= χ⊗

 ∏
j∈Z/fZ

ω
aj

j ⊕
∏

j∈Z/fZ

ω
bj
j


for some character χ =

∏
j ω

cj
j such that a0 > b0 and for each j, min{aj , bj} = 0

and max{aj , bj} ∈ [0, (p+ 1)/2]. Let

µj := (max{aj , bj}+ cj , cj).

One verifies immediately that τ = τ(s, µ) where sf−1, sf−2, . . . , s0 are determined
(successively and) uniquely by the following constraints:

s−1
f−1s

−1
f−2 . . . s

−1
f−j(µf−j) = (af−j + cf−j , bf−j + cf−j) for 1 ≤ j ≤ f − 1,

sj = id whenever µj = (cj , cj), and

s0s1 . . . sf−1 = id .

The permutation sor,j is id if and only if for some k ∈ [1, f ] (taking indices in Z
instead of Z/fZ), aj+i = bj+i for each i ∈ [1, k − 1] and aj+k > bj+k.

A criterion for a Breuil–Kisin module M with A coefficients to be a point of
Cτ∨

(J) is given in [BBH+, Cor. 3.17] and is as follows: For each j, consider an
ordered basis (Zariski locally on A) {ej , fj} of Mj with I(K ′/K) acting via η1 on ej
and via η2 on fj . Consider the matrix of the Frobenius map ΦM,j : φ

∗Mj−1 → Mj

with respect to the basis {1 ⊗ ej−1, 1 ⊗ fj−1} of the domain and {ej , fj} of the

codomain. Then M ∈ Cτ∨
(J)(A) if and only if v divides the top left entry (resp.

bottom right entry) of the matrix for ΦM,j whenever j ∈ J (resp. j ̸∈ J). Thus, we
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find that Y η,τ
S = Cτ∨

(J) where j ∈ J if and only if

Sj =



L if sor,j = id and η−1
1 = χ⊗

∏
j

ω
aj

j ,

R if sor,j = w0 and η−1
1 = χ⊗

∏
j

ω
aj

j ,

R if sor,j = id and η−1
1 = χ⊗

∏
j

ω
bj
j ,

L if sor,j = w0 and η−1
1 = χ⊗

∏
j

ω
bj
j .

Now, if A = {i− k, . . . , i} ∈ M , let

Ai def
= {i− k}, Ao def

= {i}, A∗ def
= A∖ {i− k},

and

M i def
=

⋃
A∈M

Ai, Mo def
=

⋃
A∈M

Ao, M∗ def
=

⋃
A∈M

A∗.

By definition,

• if j ̸∈ M∗ ∪M i, then γj ≤ (p− 1)/2;
• if j ∈ M i, then γj + 1 ≤ (p− 1)/2;
• if j ∈ M∗ ∖Mo, then p− 1− γj < (p− 1)/2;
• if j ∈ Mo, then p− γj ≤ (p− 1)/2.

Setting

χ−1 = η2 ⊗
∏

j ̸∈M∗

ω
γj

j ⊗
∏

j∈M∗∖Mo

ωp−1
j ⊗

∏
j∈Mo

ωp
j ,(5.2)

we have τ∨ ⊗ χ ∼= ∏
j∈M∗∖Mo

ω
−p+1+γj

j ⊗
∏

j∈Mo

ω
−p+γj

j

⊕

 ∏
j ̸∈M∗∪M i

ω
−γj

j ⊗
∏

j∈M i

ω
−γj−1
j


and therefore, τ ⊗ χ−1 ∼= ∏

j∈M∗∖Mo

ω
p−1−γj

j ⊗
∏

j∈Mo

ω
p−γj

j

⊕

 ∏
j ̸∈M∗∪M i

ω
γj

j ⊗
∏

j∈M i

ω
γj+1
j

 .

Since 0 ̸∈ M∗ by hypothesis,

aj = γj , bj = 0 for j ̸∈ M∗ ∪M i,

aj = γj + 1, bj = 0 for j ∈ M i,

aj = 0, bj = p− 1− γj for j ∈ M∗ ∖Mo,

aj = 0, bj = p− γj for j ∈ Mo.

In particular, η−1
1 = χ⊗

∏
j∈Z/fZ ω

bj
j . Following through the steps of the algorithm

to compute sj , sor,j and Sj immediately produces the desired statement. □

Definition 5.3. A sequence of integers (a1, . . . , an) is said to satisfy ♡ if a1 = p−1,
a2 = · · · = an−1 = 1 and an = 0.
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Lemma 5.4. Let (γj)j , s, µ, S be as in Lemma 5.1. Let

z̃ ∈
∏

j∈Z/fZ

{w0tη, tw0(η)}s
−1
j vµj .

Let T = (Tj)j be the class tuple associated to the data of z̃, s, µ, S. The following
are true:

(i) If A = {i− k, . . . , i} ∈ M , then

Tj ∈ {1, 2} if j = i− k,

Tj = 2 if j ∈ A∖ {i− k, i}, and

Tj ∈ {3, 4} if j = i.

If j is not in any subset contained in M , then Tj ∈ {3, 4, 5}.
(ii) If M = ∅ and ⟨µj , α

∨⟩ = 1 for each j ∈ Z/fZ, then for each T ∈ {3, 4}Z/fZ,

there exists z̃ so that the class tuple associated to B̃a(z̃)S is T .
(iii) There exists z̃ so that the set T∗ (associated to the data of z̃, s, µ, S) is non–

empty if and only if (γj)j∈Z/fZ contains some subsequence (γi−k, . . . , γi)
satisfying ♡. The number of such subsequences is ≥ |T∗|. Suitable z̃ can
be chosen so that equality holds, and the lowest value of l(t) − 1 attained
over t ∈ T∗ as z̃ varies is the smallest length of a sequence (γi−k, . . . , γi)
satisfying ♡.

Proof. The proofs of (i) and (ii) follow from simple comparison of (µ, s, S) in the

statements of Lemma 5.1 with the classification of B̃aj(z̃j)Sj in Section 4.1 and
Tables 1 and 2.

For (iii), we first make the following observation: If t = (i− 1, i, . . . , i+ l) ∈ T∗,
then by definition of T∗ and the constraints on T , i ∈ Mo; Tj = 3 for each
j ∈ {i, . . . , i+ l − 1}; and either i+ l ∈ M i and Ti+l = 1, or i+ l ̸∈ M∗ ∪M i and
Ti+l = 5.

By comparison with Section 4.1 and Tables 1 and 2, Ti = 3 implies γi = p− 1;
Tj = 3 for j ∈ {i, . . . , i + l − 1} ∖ {i} implies γj = 1; and Ti+l ∈ {1, 5} implies
γi+l = 0. On the other hand, if the sequence (γi, . . . , γi+l) satisfies ♡, then
Tables 1 and 2 demonstrate the existence of suitable (z̃i, . . . , z̃i+l) so that we
get t = (i − 1, i, . . . , i + l) ∈ T∗. Note that l(t) − 1 is the length of the sequence
(γi, . . . , γi+l). □

Now, we are ready to prove the main theorem of this section, which provides an
upgrade of [GKKSW, Thm. 5.0.1].

Theorem 5.5. Let σ = σm,n be a non–Steinberg Serre weight. The following are
true:

(i) The component X (σ) is not smooth if and only if one of the following two
holds:
(a) For each j ∈ Z/fZ, nj = p− 2.
(b) There exists a subset {i− k, . . . , i} ⊂ Z/fZ with ni−k = 0, nj = p− 2

if j ∈ {i− k, . . . , i}∖ {i− k, i}, and ni = p− 1.
(ii) If (a) holds, X (σ) is not normal and its normalization admits a smooth–

local cover by a Cohen–Macaulay and resolution–rational scheme that is
not Gorenstein. The non–normal locus on X (σ) has codimension f and its
complement is smooth.
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(iii) If (b) holds, X (σ) is normal and admits a smooth–local cover by a Cohen–
Macaulay and resolution–rational scheme. It is additionally Gorenstein,
even lci, if and only if every subset {i − k, . . . , i} ⊂ Z/fZ as in (b) has
cardinality 2. The singular locus on X (σ) has codimension ≥ 2 and its
complement is smooth.

Proof. When neither (a) nor (b) holds, this is the main result of [GKKSW] when
nj ̸= 0 for some j ∈ Z/fZ and follows, for e.g., from the Appendix of loc. cit. when
nj = 0 for each j ∈ Z/fZ.

For the rest of the cases, [GKKSW, Prop. 4.1.2] shows that X (σ) is the scheme–

theoretic image of Cτ∨
(Z/fZ) for a principal series τ∨ = η1 ⊕ η2 with

η1η
−1
2 =

∏
j∈Z/fZ

ω
p−1−nj

j .

Thus, X (σ) is the scheme–theoretic image of Y η,τ
S where, when (a) holds, s, µ, S are

as in Lemma 5.1 with the set M = ∅, and ⟨µj , α
∨⟩ = 1 for each j. When (b) holds,

then s, µ, S are as in Lemma 5.1 with M ̸= ∅ (after possibly relabelling 0 ∈ Z/fZ
so as to guarantee that 0 ∈ Mo).

An application of Theorem 4.32 in conjunction with Lemma 5.4 shows that
X (σ) = Zτ

S is not smooth when (a) or (b) holds, as well as describes the singularities.
The statements about the codimensions of the singular loci follow from Corollaries
4.38 and 4.39. □

By considering the codimension of the singular locus, we also obtain the following
result.

Theorem 5.6. Let f > 1, σ = σm,n a non–Steinberg Serre weight, and ι : U ↪→ X (σ)
the smooth open locus in X (σ). Suppose F is a finite type maximal Cohen–Macaulay
sheaf on X (σ) generically of rank 1. The following are true:

(i) The sheaf F is isomorphic to the pushforward along ι of the invertible sheaf
ι∗F on U .

(ii) If there does not exist i such that (ni−1, ni) = (0, p − 1), then F is the
pushforward under πS of a unique invertible sheaf on Y η,τ

S for some suitable
τ, S.

Proof. When X (σ) is smooth, (i) is trivial and (ii) follows from [GKKSW, Prop. 4.2.1]
when nj ̸= 0 for some j ∈ Z/fZ and from the Appendix of loc. cit. when nj = 0
for each j ∈ Z/fZ. Otherwise, fix τ and S such that X (σ) = Zτ

S . By Theorem 5.5,
the singular locus on Zτ

S has codimension ≥ 2. Therefore, Lemma 5.8 below shows
that F is obtained as the pushforward of a maximal Cohen–Macaulay sheaf on the
normalization of Zτ

S . Thus, after replacing Zτ
S by its normalization if necessary, we

may assume that Zτ
S is normal.

Denote by F the pullback of F to Z̃τ
S and let j : U ↪→ Z̃τ

S be the pullback

of ι along the map Z̃τ
S → Zτ

S . Applying [HK, Thm. 3.5] to the structure map

Z̃τ
S → SpecF, we infer the existence of an isomorphism

F
∼−→ j∗j

∗F.

By Corollaries 4.38 and 4.39, π̃−1
S U is isomorphic to U under π̃S . We identify

the two, and denote by

jY : U ↪→ Ỹ η,τ
S
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the pullback of j along π̃S . We thus have j = π̃S ◦ jY . Since U is smooth, the
Auslander–Buchsbaum formula implies that j∗F is invertible. Therefore, there exists

a Weil divisor D ⊂ Ỹ η,τ
S such that j∗F ∼= j∗Y O(D), where O(D) is the (invertible)

sheaf associated to D.
Now, suppose (ii) holds. Equivalently, the complement of jY (U) in Ỹ η,τ

S has
codimension ≥ 2 by Corollaries 4.38 and 4.39. By the algebraic Hartog’s Lemma,
O(D) is the unique invertible sheaf restricting to j∗F on jY (U). Additionally,
(jY )∗j

∗F ∼= O(D).
Descent data on F corresponding to the sheaf F restricts to descent data on j∗F .

Since j(U) is a dense open subscheme of Z̃τ
S and F has no embedded primes being

maximal Cohen–Macaulay, descent data on j∗F uniquely extends to descent data
on j∗j

∗F . When the complement of jY (U) has codimension 2, the descent data
on j∗F also extends uniquely to descent data on G. Therefore, by descending, we
finish the proofs of parts (i) and (ii). □

Remark 5.7. To be precise, the pushforward functors considered in Theorem 5.6
are the quasicoherent pushforwards defined in [Sta, Tag 077A].

Lemma 5.8. Let M be a finitely generated maximal Cohen–Macaulay module over a
noetherian integral domain A that is regular in codimension 1. Then M is obtained
by restriction of scalars from a maximal Cohen–Macaulay module defined over the
normalization of A.

Proof. Being maximal Cohen–Macaulay on an integral domain, the only associated
prime of M is the zero ideal. Hence, M is torsion-free and admits an injection

M ↪→ M ⊗A Frac(A).

We will show that M equals the finitely generated A–submodule M ′ ⊂ M⊗AFrac(A)
generated by the action of the normalization of A on M . We can assume A is local
with maximal ideal m. We prove the statement by induction on the dimension of A.
The case when dimA ∈ {0, 1} is immediate since A is normal in that case. Now,
suppose dimA ≥ 2. By construction, M ′ is torsion-free and hence, has depth ≥ 1.
By induction, if M ′/M is non–zero, then its support is {m} and in particular, its
depth is 0. Consider the short exact sequence

0 → M → M ′ → M ′/M → 0

and the long exact sequence obtained from it by applying the functor HomA(A/m, ).
Since depth M ′ ≥ 1, nonzero M ′/M implies that depth M = 1, a contradiction. □

Theorem 5.9. Let σ = σm,n be a non–Steinberg Serre weight. The versal ring

at ρ ∈ X (σ)(F) is not normal if and only if nj = p − 2 for each j, and as a
GK–representation, ρ is of the form ∏

j∈Z/fZ

ω
(mj−1)
j

⊗
(
urλ′ ∗
0 urλ′′

)
where λ′ and λ′′ are arbitrary units in F, and

• ∗ is vanishing if λ′ ̸= λ′′, and
• ∗ lies in the 1–dimensional space of extension classes that vanish after
restriction to IK if λ′ = λ′′.

https://stacks.math.columbia.edu/tag/077A
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Proof. As noted in the proof of Theorem 5.5, X (σ) is the scheme–theoretic image

of Cτ∨
(Z/fZ) = Y η,τ

S , where τ∨ ∼= η1 ⊕ η2 with

η1 =
∏

j∈Z/fZ

ω
mj

j and η2 =
∏

j∈Z/fZ

ω
mj−1
j ,

and s, µ, S are as in Lemma 5.1. Therefore µj = (−mj +1,−mj) for each j ∈ Z/fZ.
By Corollary 4.36, the versal ring at ρ is not smooth, if and only if it is not

normal, if and only if it lifts to a point in the vanishing locus of N in Z̃τ (z̃)S for
the unique (by Table 2)

z̃ ∈
∏

j∈Z/fZ

{w0tη, tw0(η)}s
−1
j vµj

such that the class tuple (Tj)j associated to B̃a(z̃)S satisfies Tj = 3 for each
j ∈ Z/fZ. By the proof of Lemma 4.1, V (N) is the image of the closed locus in

Ỹ η,τ (z̃)S cut out by setting Xj = id for each j.

Let M be a Breuil–Kisin module with F–coefficients in the image of this locus

under the map Ỹ η,τ (z̃)S → Y η,τ
S . The matrix A

(j)
M,β is given by Wj described in

(3.23). By [LHMM, Table 3], ljκj = rj for each j, or equivalently, l̃jκj r̃
−1
j ∈ B(F).

Therefore,

A
(j)
M,β ∈ B(F)

(
1 0
0 v

)
.

On the other hand, one verifies immediately that for any (bj)j ∈ B(F)Z/fZ,

([0 : 1], bj , id, [0 : 1])j ∈ B̃a(z̃)S

gives a point of Ỹ η,τ (z̃)S in the fiber over V (N). Equivalently, the finite type points
in the non–normal locus are precisely the étale φ–modules admitting Breuil–Kisin
models (with descent data of type τ) M with

A
(j)
M,β =

(
λ′
j xjv
0 λ′′

j v

)
where λ′

j , λ
′′
j are invertible while xj is an arbitrary scalar for each j ∈ Z/fZ.

Following the classification of rank 1 Breuil–Kisin modules with descent data in

[CEGSc, Lem. 4.1.1], such Breuil–Kisin modules are certain extensions of M′′ def
=

M(r′′, (λ′′
j )j , c

′′) by M′ def
= M(r′, (λ′

j)j , c
′), where for each j ∈ Z/fZ, r′′j = pf − 1,

r′j = 0, c′′j =
∑

i∈Z/fZ pimj−i, c
′
j =

∑
i∈Z/fZ pi(mj−i − 1). We claim that the

extension class is 0 whenever
∏

j λ
′
j ≠

∏
j λ

′′
j . Otherwise, the space of extensions

is 1–dimensional. To see this, we simplify the matrices A
(j)
M,β in the following way:

First, by scaling the elements of β appropriately, we can assume that λ′
j = λ′′

j = 1
for all j ̸= 0. Let

gj =

(
1 αj

0 1

)
∈ B(F).

The matrix gjA
(j)
M,β

(
Ad s−1

j vµj (g−1
j−1)

)
is given by(

λ′
j v(xj − αj−1λ

′
j + αjλ

′′
j )

0 λ′′
j v

)
.
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When f = 1, if λ′
0 ̸= λ′′

0 , take α0 = x0/(λ
′′
0 − λ′

0) to kill x0. On the other hand, if
λ′
0 = λ′′

0 , then no choice of α0 can alter x0. When f ≥ 2, the extension class is seen
to be vanishing if we can find (αj)j so that

−1 1 0 0 . . . 0 0 0
0 −1 1 0 . . . 0 0 0
...

. . .
...

0 0 0 0 . . . −1 1 0
0 0 0 0 . . . 0 −1 1
λ′′
0 0 0 0 . . . 0 0 −λ′

0


︸ ︷︷ ︸

C



α0

α1

...
αf−3

αf−2

αf−1


= −



x1

x2

...
xf−2

xf−1

x0


.

Using cofactor expansion along the bottom row, we see that the determinant is
±(λ′

0 − λ′′
0). Therefore, the extension class is vanishing when λ′

0 ≠ λ′′
0 . Otherwise,

we can choose any α0 and make successive choices of α1, . . . , αf−1 so that xj −
αj−1λ

′
j + αjλ

′′
j is 0 for each j ∈ {1, . . . , f − 1}.

We need not consider any other types of change–of–basis matrices (gj)j ∈
L+GZ/fZ because if each xj has to be killed, then using that ⟨µj , α

∨⟩ ≤ p − 2,
one checks immediately that it has to be killed by the constant part of (gj)j .
Further, diagonal matrices cannot kill xj . Following [CEGSc, Defn. 4.2.4], we addi-
tionally note that (M′′,M′) has refined profile (Z/fZ, r′′). Therefore, by [CEGSc,
Prop. 5.1.8], the extension class of M[1/u] is non–vanishing if and only if that of M
is non–vanishing.

Computing the GK–representations associated to M′ and M′′ using [CEGSc,
Lem. 4.1.4], we get the desired statement, except for the precise characterization of
the one-dimensional extension class when λ′

0 = λ′′
0 . (Note that the formula actually

gives GK∞–representations for K∞ a wildly ramified extension of K, but by [CEGSc,
Prop. 2.2.6], this is enough.)

Finally, to characterize the 1–dimensional extension class that survives when
λ′
0 = λ′′

0 , let M = ετ (M). By Proposition 2.13, for each j, there exists a basis of

Mj with respect to which the matrix of φ
(j)
M : Mj−1 → Mj is given by

A
(j)
M,βs

−1
j vµj = A

(j)
M,β

(
v 0
0 1

)
v−mj .

We claim that the GK∞–representation T (M) splits after restriction to GL∞ , where
L is the unramified extension of K of degree p with residue field l = Fppf and L∞ =
LK∞. Indeed, one can check easily that the étale φ–module ML corresponding to
T (M)|L∞ is given by l((v))⊗k((v)) M. Thus, for j ∈ Z/pfZ, the matrix Fj for the

Frobenius map φ
(j)
ML

: (ML)j−1 → (ML)j with respect to the obvious basis is given
by

(
1 0
0 1

)
v1−mj mod f if j ̸≡ 0 mod f,(

λ′
0 x0

0 λ′
0

)
v1−mj mod f if j ≡ 0 mod f.
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Let

gj =

(
1 −djx0/λ

′
0

0 1

)
where dj ∈ [0, p − 1] is such that j − djf ∈ {0, 1, . . . , f − 1} mod pf . Then the

change–of–basis that maps Fj to gjFjg
−1
j−1 exhibits ML as a split extension of two

rank one étale φ–modules, as desired. Therefore, ρ is split after restriction to GL,
and in particular to IL. By [DDR, Cor. 3.2], the space of extensions that vanish
after restriction to IK = IL is 1–dimensional. Thus, by comparison of dimension, we
get the desired description of the extension class that survives when λ′

0 = λ′′
0 . □

Theorem 5.10. Let σ = σm,n be a Serre weight with n0 = p − 1, n1 = 0, and

nj = p− 2 for j ̸∈ {0, 1}. The versal ring at ρ ∈ X (σ)(F) is not smooth if and only
if as a GK–representation, ρ is of the formωm1

1 ⊗
∏
j ̸=1

ω
mj−1
j

⊗
(
urλ′ ∗
0 urλ′′

)
where λ and λ′′ are arbitrary units in F, and

• ∗ is vanishing if λ′ ̸= λ′′, and
• ∗ lies in the 1–dimensional space of extension classes that vanish after
restriction to IK if λ′ = λ′′.

In this case, the versal ring is normal and Cohen–Macaulay. It is Gorenstein, even
lci, if and only if f = 2.

Proof. As noted in the proof of Theorem 5.5, X (σ) is the scheme–theoretic image
of Y η,τ

S where, by Lemma 5.1, (⟨µj , α
∨⟩, sj , sor,j , Sj) equals

(1, w0, w0, L) if j = 0,

(1, w0, id, R) if j = 1,

(1, id, id, R) if j ̸∈ {0, 1}

and by [GKKSW, Prop. 4.1.2], τ∨ ∼= η1 ⊕ η2 where

η1 =
∏

j∈Z/fZ

ω
mj

j , η2 =
∏

j∈Z/fZ

ω
mj+nj

j .

Thus, µj = (cj+1, cj) for each j where, by (5.2), cj = −mj if j ̸= 1 and c1 = −m1−1.
By Corollary 4.37 and the proof of Lemma 5.4 we are looking for ρ admitting

a lift to Z̃τ (z̃)S for some z̃ = (w̃js
−1
j vµj )j with w̃j ∈ {w0tη, tw0(η)} such that the

associated type class tuple (Tj)j satisfies T1 = · · · = Tf−1 = 3 and T0 = 1, so that
the lift lies in the vanishing locus of N(t) where t = (0, 1, . . . , f − 1, 0) ∈ T∗. By
comparing s, µ to Tables 1 and 2, we find that w̃0 = w̃1 = w0tη while w̃j = tw0(η)

for j ̸∈ {0, 1}.
The proof of Lemma 4.1 shows that V (N(t)) is the image of the closed locus

in Ỹ η,τ (z̃)S cut out by setting Xj = id for each j ̸= 0, and that X0 is necessarily

id. Let M be a Breuil–Kisin module with F–coefficients in the image of this locus

under the map Ỹ η,τ (z̃)S → Y η,τ
S . The matrix A

(j)
M,β is given by Wj described in

(3.23). By [LHMM, Table 3], ljκj = rj , equivalently l̃jκj r̃
−1
j ∈ B(F), for each j ̸= 0.
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Therefore, there exist bj ∈ B(F) for j ̸= 0 and b0 ∈ GL2(F) such that

A
(j)
M,β =



b0

(
0 1

v 0

)
if j = 0,

b1

(
0 1

v 0

)
if j = 1,

bj

(
1 0

0 v

)
if j ̸∈ {0, 1}.

(5.11)

On the other hand, one verifies immediately that for any (bj)j with bj ∈ B(F) when

j ̸= 0 and b0 ∈ GL2(F),

([0 : 1], bj , id, [0 : 1])j ∈ B̃a(z̃)S

gives a point of Ỹ η,τ (z̃)S in the fiber over V (N(t)). In other words, the finite type
points in the non–CM locus are precisely the étale φ–modules admitting Breuil–Kisin

models (with descent data of type τ) M with A
(j)
M,β satisfying (5.11) for each j. Let

b0 =

(
U V
W Z

)
∈ GL2(F)

and for each j ̸= 0,

bj =

(
λ′
j x′

j

0 λ′′
j

)
.

Therefore,

C
(j)
M,β =



(
W Zupf−1−l0

Uul0 V v

)
if j = 0,(

x1v λ′
1u

l1

λ′′
1u

pf−1−l1 0

)
if j = 1,(

λ′
j x′

ju
lj

0 λ′′
j v

)
if j ̸∈ {0, 1},

(5.12)

for suitable integers lj ∈ (0, pf − 1). Specifically, l0 = pf−1 −
∑f−2

i=0 pi and l1 =

−1 +
∑f−1

i=1 pi. Let βj = (ej , fj) (note that it follows from the proof of Lemma 5.1
that βj is ordered with respect to the ordering (η2, η1) of the eigenvalues).

Suppose first that b0 ∈ B(F), equivalently W = 0. We observe from the matrices
that f0+e1+ · · ·+ef−1 gives a free generator of a sub-Breuil Kisin module M′ of M
and e0+f1+· · ·+ff−1 lifts a basis of the quotient M′′. Thus, in the sense of [CEGSc,
Sec. 4.2], M is an extension of M′′ ∼= M(r′′, (λ′′

j )j , c
′′) by M′ ∼= M(r′, (λ′

j)j , c
′) where

λ′
0 = U , λ′′

0 = Z,

r′′j = pf − 1− l0, r′j = l0 if j = 0,

r′′j = pf − 1− l1, r′j = l1 if j = 1,

r′′j = pf − 1, r′j = 0 if j ̸∈ {0, 1},

and {c′j}j , {c′′j }j satisfy

ω
c′′j
j = η1, ω

c′j
j = η2 when j ̸= 0,
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while ω
c′′0
0 = η2, ω

c′0
0 = η1. Note that (M′′,M′) has refined profile (Z/fZ∖ {0}, r′′).

Using exactly the same arguments as in the proof of Theorem 5.9, we find that the
Galois representations associated to such M[1/u] are precisely those of the form
described in the statement of the theorem.

Next, suppose W ∈ F
×
. Consider a change of basis on M that transforms

bj = A
(j)
M,βw̃

−1
j to b′j = gjA

(j)
M,β

(
Ad s−1

j vµj (g−1
j−1)

)
w̃−1

j with gj ∈ B(F) for each j.
We claim that by doing a careful change of basis, we can arrange for V = x1 = · · · =
xf−1 = 0. First, one sees immediately that by taking gj = id for j ̸∈ {f − 1, 0} and

suitable gf−1, g0 ∈ B(F), we can arrange V = 0. Similarly, it is easy to see that

after doing a change of basis with gf−1 = g0 = id and suitable gj ∈ B(F) for each
j ̸∈ {0, f − 1}, we can take xj = 0 whenever j ̸∈ {0, 1} and further, λ′

j = λ′′
j = 1

when j ̸= 0. Next, take

gj =

(
1 αj

0 1

)
where α0 ∈ F satisfies

Wα2
0 + (U − Z −Wx1)α0 − Ux1 = 0,

and α1 = · · · = αf−1 = α0 − x1. Thus

b′j =



(
U + α0W −Uαf−1 −Wα0αf−1 + Zα0

W Z

)
if j = 0,(

1 x1 − α0 + α1

0 1

)
if j = 1,(

1 −αj−1 + αj

0 1

)
if j ̸∈ {0, 1}.

By choice of αj , the top right entry of b′j vanishes for each j.
Now, assume V = x1 = · · · = xf−1 = 0 and let M = ετ (M). By Proposition

2.13, one can choose a basis for each j so that the matrix of φ
(j)
M : Mj−1 → Mj is

given by A
(j)
M,βs

−1
j vµ. We have

A
(j)
M,βs

−1
j vµ =



(
U 0

W Z

)
v−m0+1 if j = 0,(

λ′
j 0

0 λ′′
j

)
v−m1 if j = 1,(

λ′
j 0

0 λ′′
j

)
v−mj+1 if j ̸∈ {0, 1}.

After a change of basis involving permuting the two basis elements of Mj for each
j, we find that M could also have been obtained via the first case, that is, when we
assumed b0 ∈ B(F). Therefore, we get no new representations upon assuming that
W is a unit. This finishes the proof. □
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