Definition: A scheme T is of finite order r over S, if $T=\operatorname{spec} A$ is a sheaf of θ_{S} - algebras, which is locally free of rank r

needs S locally
neth + conn

Suppose $G=\operatorname{spec}(A)$ is a commutative
gp scheme of finite order over S.
Consider the map $m_{G}: G \longrightarrow G$
st. $g \longmapsto g^{m}$
$G(T)$ for T / S

In the first part, we look at 2 theorems:

- Theorem (Deligne) - A commutative S-group of order m is killed by m i.e. $m_{a}=O_{a}$

$$
\text { or } g^{m}=e
$$

- Theorem 1- An S-group of order p is commutative

Notation:
(1)
$G=\operatorname{spec}(A)$ is a group scheme of finite order over S.
(2) We have maps:

$$
\text { - } \begin{aligned}
s_{A}: \phi & \rightarrow A \otimes_{\theta_{S}} \& \\
G \times G & \longrightarrow G
\end{aligned}
$$

(comultiplication)
(law of composition)

- $t_{A}: A \otimes_{\theta_{S}} A \longrightarrow A$ (alg multiplication)

$$
G \xrightarrow{\uparrow} G \times G
$$

(3) Let A^{\prime} denote the θ_{S}-linear dual of A

$$
A^{\prime}:=\operatorname{Hom}_{\theta_{S}}\left(A, \theta_{S}\right)
$$

As A^{\prime} is locally free of same rank as A,

$$
\left(A^{\prime} \otimes A^{\prime}\right) \cong(A \otimes A)^{\prime}
$$

\& we have

$$
\begin{aligned}
& t_{A^{\prime}}=\left(s_{A}\right)^{\prime}: \quad A^{\prime} \otimes_{\theta_{s}} A^{\prime} \longrightarrow A^{\prime} \\
& \text { (ass. because } s_{A} \text { is } \\
& \text { only } T\left\{\begin{array}{l}
\text { commidative ifs } \\
s_{\&} \text { is commutative }
\end{array}\right. \\
& \text { barrier to aft } G \text { is commutative) } \\
& \text { taking relative spec of } A^{\prime}
\end{aligned}
$$

$$
s_{A^{\prime}}=\left(t_{A}\right)^{\prime}: A^{\prime} \longrightarrow A^{\prime} \otimes A^{\prime}
$$

Commutative \& associative as t_{*} is)

If G is commutative, $\operatorname{spec}\left(A^{\prime}\right)$ is a commutative gp scheme, with unit \& counit dualizing counit \& unit resp. of \& (Cartier dual)

Note:

$$
G(S)=\operatorname{Hom}_{\theta_{s}-a l g}\left(A, \theta_{s}\right) \quad \longrightarrow \Gamma\left(S, A^{\prime}\right)
$$

Claim: This gives an isomorphism of $G(s)$ into the multiplicative group of invertible elements $g \in \Gamma\left(S, A^{\prime}\right)$ such that $S_{A^{\prime}}(g)=g \otimes g$
(These are the characters of $G^{\prime} \therefore \therefore \quad G=$ character gp scheme of G^{\prime})

Pf:

Note:

- $S_{A^{\prime}}(f)=f \otimes f$

$$
\begin{array}{lll}
\Leftrightarrow & \left(f \circ t_{A}\right)(a \otimes b) & =(f \otimes f)(a \otimes b) \\
\Leftrightarrow & f(a b)=f(a) f(b)
\end{array}
$$

- f invertible $\Leftrightarrow \quad \exists g: \quad t_{A^{\prime}}(f \otimes g)=\varepsilon^{\prime \prime}$

Now,
If $f \in G(s)$,

$$
S_{N^{\prime}}(f)=f \otimes f \quad \& \quad \exists f^{-1} \in G(s) \quad \& \quad t_{A^{\prime}}\left(f \otimes f^{-1}\right)=\varepsilon
$$

$\therefore f$ is invertible

OTOH if f is invertible \& satisfies's $S_{A^{\prime}}(f)=f \otimes f$

$$
\begin{aligned}
& (f \otimes g) \cdot S_{A}(1)=\varepsilon(1) \\
\Rightarrow & f(1) g(1)=1 \\
\Rightarrow & f(1) \text { is a unit } \\
f(1)= & f(1-1)=f(1)^{2} \\
& \Rightarrow f(1)=1
\end{aligned}
$$

$$
\therefore \quad f \in G(S)
$$

So if G is commutative,

$$
\begin{aligned}
& A \xrightarrow{\sim}\left(A^{\prime}\right)^{\prime} \\
& \therefore G \xrightarrow{\sim}\left(G^{\prime}\right)^{\prime} \\
& \begin{aligned}
G(T)=G_{T}(T) & \xrightarrow[g]{ } \\
& \longmapsto
\end{aligned} \quad \operatorname{Hom}_{T \text {-gps }}\left(G_{T}^{\prime}, \mathbb{G m}_{m, T}\right) \quad \forall T / S \\
& G(T) \longrightarrow \operatorname{Hom}_{g p}\left(G^{\prime}(T), \mathbb{G}_{m}, s(T)\right) \\
& G x_{s} G^{\prime} \longrightarrow \mathbb{G m}_{m} \\
& \text { (Cartier pairing) }
\end{aligned}
$$

E.g. If Γ is a finite gp. $\Gamma_{\operatorname{spec} R}$, constant gp scheme has cartier dual given by spec $R[\Gamma]$

Theorem: A commutative $S \mathrm{gp}$. of order m is killed by m_{G}

Idea of pf: Let Γ be abstract gp of order m \& let $x \in \Gamma$

$$
\begin{aligned}
& \prod_{r \in \Gamma}=\pi(r x)=(\pi r) x^{m} \\
& \Rightarrow x^{m}=1
\end{aligned}
$$

To apply the idea, Deligne defines a trace map:

Suppose $T=\operatorname{spec}(B)$ is a scheme of order m over S

2) Claim: If $\quad S_{A^{\prime} \otimes B}(f)=f \otimes f$
then $\quad S_{A^{\prime}}(N(f))=N(f) \otimes N(f)$

Pf of claim:

First, note that if $R^{\prime} \xrightarrow{?} R^{\prime \prime}$ is an alg hom B / R, sue of finite ok

$$
\begin{array}{rcc}
B \otimes_{\theta_{s}} R^{\prime} & \xrightarrow{1 \otimes \Phi} & B \otimes_{\theta_{s}} R^{\prime \prime} \\
\left.\right|_{N} ^{N} & 2 & \left.\right|^{N} \\
R^{\prime} & \varphi & R^{\prime \prime}
\end{array}
$$

Let $\{e i\}$ give a basis of B over ground $r g$

$$
\begin{gathered}
f \in B \otimes_{R} R^{\prime} f\left(e_{j} \otimes 1\right)=\sum \mu_{i j}\left(e_{j} \otimes 1\right)=\sum e_{j} \otimes \mu_{i j} \\
(1 \otimes Q) f \cdot(1 \otimes Q)\left(e_{j} \otimes 1\right)=\sum e_{j} \otimes Q \mu_{i j} \\
\therefore \quad N(f)=\operatorname{det} \mu_{i j} \quad \longmapsto \varphi \quad \operatorname{det} Q \mu_{i j}=N((\otimes Q) f)
\end{gathered}
$$

$S_{B \oplus A^{\prime}}$
Apply to $B \otimes_{\theta_{S}} A^{\prime} \xrightarrow{\text { id } \otimes S_{A^{\prime}}} \quad B \otimes_{\theta_{S}} A^{\prime} \otimes A^{\prime}$

For f in $G(T), \quad S_{A^{\prime}}(N(f))=N\left(S_{B \otimes A^{\prime}} f\right)=N\left(f \otimes_{B} f\right)$

$$
\begin{aligned}
& N(f) \otimes 1=N(f \otimes 1) \\
& \therefore N(f \otimes f)= N(f \otimes 1) N(1 \otimes f)= \\
&(N(f) \otimes 1) \\
&(1 \otimes N(f) \\
&= N(f) \otimes N(f)
\end{aligned}
$$

\therefore if $f \in G(T), \quad N(f)$, being invertible as well, $\in G(s)$.

Tr is a gp homomorphism

$$
\operatorname{Tr}_{f}(u)=u^{m} \quad \forall u \in G(S) \subset G(T)
$$

If $t: T \longrightarrow T$ is an s-automorphism.
then $\operatorname{Tr}(f)=\quad \operatorname{Tr}(T \xrightarrow{t} T \xrightarrow{f} a) \quad \forall f \in G(T)$
because t coiallyuces a rearrangement of basis of B

Pf of Theorem:

We want to show that if $u \in G(S)$, then $u^{m}=1$ (Enough: we can vary base scheme \& see every pt as a map from the base scheme)

Let $t_{u}: G \longrightarrow G$ be the translation on G by u

$$
\left(a \xrightarrow{\sim} G x_{s} s \xrightarrow{i d, u} a x_{s} G \longrightarrow G\right)
$$

Consider id $\in G(G)$

$$
\begin{aligned}
& \operatorname{Tr}(i d)=\operatorname{Tr}\left(G \underset{g \mapsto g u \longmapsto g u}{t_{u}} G_{g}\right) \\
& \text { id } 0 t_{u} \quad: \quad \text { id } \stackrel{G(G)}{\longmapsto} \quad i d * u \\
& \therefore i d 0 t_{u}=i d * u: G \longrightarrow G
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{Tr}(i d) \operatorname{Tr}(u) \\
& =\operatorname{Tr}(i d) * u^{m} \\
& \Rightarrow \quad u^{m}=1
\end{aligned}
$$

Theorem 1: An S gp of order p is commutative \& killed by p
(only need to show commutativity)

Pf: Reduce to the case that $S=\operatorname{Spec} R$ affine. $G=\operatorname{spec} A$

$$
0 \rightarrow \text { ken } \rightarrow A \xrightarrow{S_{A}-S_{A} \circ \text { swap }} A \otimes A
$$

STS that at each local $v g$, ker is 0 ,
$\therefore \quad W M A \quad R$ is local

Can embed R in a (henselian) local $r g^{R^{s n}} w /$ residue field $k=k^{s}$

$$
A \hookrightarrow A \otimes_{R} R^{s h}
$$

\& STS G_{R} sh is commutative
So WMA $\quad R$ is local $w /$ residue field $k=k^{S}$

Lemma: Let $k=k^{s} . \quad G=\operatorname{spec} A$ be a $k-g p$ of order p. Then either a is the constant op scheme, or char $k=p$ \& $\quad G=\mu_{p, k}$

$$
G=\alpha_{p, k}
$$

In particular, G is commutative $f A$ is gen by a single eft

Pf of the granting Lemma:
$G_{k}=\operatorname{spec}(\overbrace{A \otimes_{R} k}^{\prime \prime})$ is comm. by lemma
" $A^{\prime} \otimes_{R} R$
$\therefore(\bar{A})^{\prime}$ has comm Hop alg structure
Apply lemma to $\left(G_{k}\right)^{\prime}$, the Cartier dual of G_{k}.

Let $x \in A^{\prime}$ be st. $\bar{x} \in A^{\prime} \otimes_{R} k=(\bar{A})^{\prime}$ generates
$A^{\prime} \otimes_{R} k$

Then $\quad \overline{R[x]}=R[x] \otimes k=k[\bar{x}]=A^{\prime} \otimes k$

By Nakayama $\quad R[x]=A^{\prime} \Rightarrow A^{\prime}$ is commutative
$\Rightarrow G$ is commutative

Now pf of Lemma 1:

Notice: $G^{0} \subset G$ is a normal subgp scheme
Fact: G / G° is well defined gp scheme of finite order
\& \quad ord $G=:|G|=|G| G^{\circ}|\cdot| G^{\circ} \mid$
II
p
$\therefore I \cdot G^{0}$ is order 1 over $\Leftrightarrow G^{0}=\operatorname{spec} k$
or
II. G° is order $p \quad \Leftrightarrow G^{\circ}=G$
I. $\Leftrightarrow G$ étale / k

$$
\begin{aligned}
& \Leftrightarrow \quad G=\underset{g \in G(k)}{W S_{\text {peck }}} \quad \therefore \quad G \cong \quad \underline{G(k)}_{k}
\end{aligned}
$$

A is gen by any function (ai) $i \in \mathbb{1 / 2 2}$ which takes distinct values at the pts of $\mathbb{Z} / p \mathbb{Z}$ because any equation that it satisfies over k will have at least p distinct solutions \therefore the equation will have deg $\geqslant p$.
II. $\Leftrightarrow \quad G$ is connected:
a / k is finite,: noetherian $+\quad$ (alt pto are clod

$$
\begin{array}{cc}
\operatorname{dem} A=0 & \begin{array}{c}
\text { gie a distinct } \\
\text { in component. } \\
\text { exactly }
\end{array} \\
\therefore \quad 1 \text { More than } 1 \text { pt }
\end{array} \Rightarrow
$$

$\therefore A=(A, m)$ is local not ry of dim 0 .
The augmentation ideal (gang the counit) m is nilpotent. $\left[\begin{array}{c}A \stackrel{\varepsilon}{t} k \Rightarrow A=k \in \mathrm{kum} \\ \therefore \mathrm{A} / \mathrm{m}=k\end{array}\right]$

As order $G=p, \quad m \neq m^{2} \quad$ (els $m=0$ by Nakayama \& order = 1)
Let $d^{H^{0}} \epsilon \operatorname{Hom}_{A}\left(\Omega_{A / k}, k\right)=\left(m / m^{2}\right)^{V}$

$$
d \in m^{\prime} \subset A^{\prime}
$$

$$
\begin{aligned}
\left.S_{A^{\prime}}(d): \underset{c}{a}\right): \overrightarrow{A^{\prime} \otimes A}
\end{aligned}
$$

$$
\therefore S_{A^{\prime}}(d)=\begin{aligned}
& \varepsilon \otimes d+d \otimes \varepsilon \quad c k[d] \otimes \\
& k[d] \\
& \text { unit ot the }
\end{aligned}
$$ wit of the af $k[d]<A^{\prime}$

$$
\therefore k[d] \subset A^{\prime}
$$

We have $\begin{aligned} A=A^{\prime \prime} \rightarrow{ }^{k}[d]^{\prime} & \Rightarrow \\ X_{k} & \\ & \Rightarrow \quad \text { order of } \\ & \end{aligned}$
T commutative
\therefore we can take $G^{\prime}=\operatorname{Spec} A^{\prime}$
G^{\prime} is étale on connected
G^{\prime} étale $\Rightarrow \quad G^{\prime}=\quad \underline{\mathbb{L}} \mathbb{Z}_{k}$

$$
\Rightarrow G=\left(G^{\prime}\right)^{\prime}=\mu_{p, k}=\operatorname{spec}\left(\frac{k[x]}{x^{p}-1}\right)
$$

As G is connected, char $k=p$.
G^{\prime} connected $\Rightarrow d$ milpotent \& $k[d]$ is of re p.

$$
\therefore d^{p-1} \neq 0 \quad \& d^{p}=0
$$

$\left(\begin{array}{l}\text { By Arlin Rees, } \\ \text { Basically } \\ \text { Stabilize unless we get to }\end{array}\right.$ doesnit $d^{n}=0$ so we will keep losing dimension' until $n \quad \therefore n \leq p$. but $k[d]$ is ok $p \therefore$ $n \geq p$)
$S_{A^{\prime}}$ is arg how $:$

$$
\begin{aligned}
0=S_{A^{\prime}}\left(d^{p}\right) & =\left(S_{A^{\prime}}(d)\right)^{p}=(1 \otimes d+d \otimes 1)^{p} \\
\Rightarrow p & =0 \quad \Rightarrow \text { char } k=p
\end{aligned}
$$

As $\quad S_{A^{\prime}}(d)=d \otimes 1+1 \otimes d$,

$$
\begin{array}{r}
q^{\prime}=\alpha_{p, k} \\
G=\left(G^{\prime}\right)^{\prime}=\alpha_{p, k}
\end{array}
$$

(dual of d ends up gount to $Q \otimes 1+1 \otimes Q$ under S_{A})

So now we wish to classify these gp schemes

Let $x: \mathbb{F}_{p} \longrightarrow \mathbb{Z}_{p}$ be ${ }^{\text {the }}$ multiplicative section of
So, $x(0)=0$ \& for $m \in \mathbb{E}_{p}^{\prime}, \quad x(m)$ is the unique $(p-1)$ root of unity in \mathbb{Z}_{p} whose residue is $m \bmod p$.
$\left.x\right|_{\mathbb{T}_{p}}$ generates the gp Homggp $\left(\mathbb{F}_{p}^{*}, \mathbb{Z}_{p}^{*}\right)$

Let $\Lambda_{p}:=\mathbb{Z}\left[X\left(\mathbb{F}_{p}\right), \frac{1}{p(p-1)}\right] \cap \mathbb{Z}_{p} \subset \mathbb{Q}_{p}$

So we are attaching the $p-1$ roots of unity

Spec $\mathbb{Z}\left[X\left(\mathbb{I}_{p}\right)\right]-\left\{\pi^{-1} D(p-1)\right.$, all \quad, primes lyly over $\downarrow \pi$

Spec \mathbb{Z} p except the me prime that gives the embedding $\left.\mathbb{Z}\left[x\left(\mathbb{T}_{p}\right)\right] \rightarrow \mathbb{Q}_{p}\right\}$
$\Lambda_{p} \cap p \mathbb{Z}_{p}=p \mathbb{Z}_{p}$ \because unramified over p

$$
\text { Fix } p, \quad \& \text { let } \Lambda=\Lambda_{p}
$$

Set up:

(so we take $X(m)$ as taking values in $T\left(s, \theta_{s}\right)$)

By Thu 1

$$
" \theta_{s} \oplus \mathbb{I}
$$

A \& the augmentation ideal I are sheaves of modules over the group algebra $\theta_{S}\left[\mathbb{F}_{p}^{x}\right]$. We mill use this action to probe the structure of g

Define $e_{i}=\frac{1}{p-1} \sum_{m \in \mathbb{F}_{p}^{*}} x^{-i}(m)[m] \in \theta_{S}\left[\mathbb{F}_{p}^{*}\right]$
(depends only on $i p_{\bmod } p-1$)
Check: $e_{i} e_{j}=0$ if $i \neq j$ (the pt is that $\sum_{r \in \mathbb{F}_{p}^{*}} x^{i-\alpha}(r)$ is a sum of the form $1+3+3^{2}+\cdots+3^{p-1}$ for $\zeta \neq 1$ some ${ }^{p-1}$ root of unites)

$$
e_{c}^{2}=1
$$

$$
\begin{aligned}
& \sum e_{i}=[1]=i d \\
& {[m] e_{i}=x^{i}(m) e_{i}}
\end{aligned}
$$

Let $g_{i}:=e_{i} I$

$$
\begin{aligned}
& \Rightarrow \quad S=\quad \oplus_{i=1}^{p-1} S_{i} \\
& f_{i}(u)=\left\{f \in \mathcal{I}(u): \quad[m] f=x^{i}(m) f \quad \forall m \in \mathbb{F}_{p}{ }^{*}\right\} \\
& =\left\{f \in g(u)=[m] f=X^{i}(m) f \quad \forall m \in \mathbb{F}_{p}\right\} \\
& \because[0] f=0 \quad \because[0]=\varepsilon \quad \& f \in g(u) \\
& \Rightarrow([m] f)([m] g)=[m](f g) \Rightarrow g_{i} J_{j} \subset I_{i+j}
\end{aligned}
$$

Since \& is eryafly flee $p-1$ over $\theta_{s}, \quad I_{i}$ is locally $f \cdot p$ pRojective modules, \therefore locally free of $r_{k} r_{i}$ \&

$$
\sum r_{i}=p-1
$$

To compute rank, we can pass to a geometric $p t$ So assume $\quad S=\operatorname{spec}(k), \quad k=\bar{k}, \quad G=\operatorname{spec} A, \quad \Gamma\left(G, I_{i}\right)=I_{i}$ We nl find $f \in I_{1}$ st. $f_{1}^{i} \neq 0 \quad \forall i \in[1, p-1]$

$$
k k I_{i} \geq 1 \quad \forall i \quad \therefore k I_{i}=1
$$

By comma earlier, we have 3 possibilities for G.

Incase 1., $G=\mathbb{Z} / P \mathbb{Z}, \quad A$ is the algebra of k-valued functions on $\mathbb{Z} / p \mathbb{Z}=\mathbb{F}_{p}$ \&

Let $f_{1}=x$

$$
\begin{gathered}
x(0)=0 \quad \therefore \quad \varepsilon(x)=p r_{0}(x)=0 \\
\therefore x \in I . \\
([m] x)(n)=x(m n)=x^{\prime}(m) x(n) \\
\therefore x \in I_{1}
\end{gathered}
$$

In case 2., 3., $G \cong \alpha_{p, k}$ or $\mu_{p, k} \cong$ \& char $k=p$
For $\alpha_{p, k}$

$$
\left.\begin{array}{rl}
A=k[t] \text { with } t^{p}=0 & , \quad s_{A} t=t \otimes 1+1 \otimes t \\
\therefore & {[m] t\binom{(i d)}{\tau} t} \\
& =t\left(i d^{m}\right) \\
t \longmapsto m t
\end{array}\right]
$$

$$
\begin{aligned}
& \text { For } \mu_{p, k} \\
& A=\frac{k[s]}{s^{p}-1}=\frac{k[t]}{t^{p}} \\
& t=s-1 \\
& {[m] s\left(\vec{d}^{s+s}\right.} \\
& =s\left(i d^{m}\right) \\
& \therefore[m] s=s^{m} \\
& \therefore \quad[m] t=s^{m}-1=(t+1)^{m}-1
\end{aligned}
$$

$$
\begin{aligned}
& A=\frac{k[s]}{s^{p}-1}=\frac{k[t]}{t^{p}} \\
& t=s-1 \\
& {[m] s\left(\vec{d}^{s+s}\right.} \\
& =s\left(i d^{m}\right) \\
& \therefore[m] s=s^{m} \\
& \therefore \quad[m] t=s^{m}-1=(t+1)^{m}-1 \\
& {[m]_{t} \equiv m t \equiv x(m) t=\bmod t^{2}} \\
& \underset{m \text { char } p}{x(m)=m} \leqslant \sum_{i} x(m) e_{i} t \\
& \sum[m] e i t \\
& \sum x^{i}(m) e_{i} t \quad \Rightarrow 0 \neq t \equiv e_{i} t \bmod t^{2}
\end{aligned}
$$

Let $f_{1}=e, t$

So we get that over alg closed fields,

$$
I_{1}^{i}=I_{i}
$$

Locally on $\quad \operatorname{Spec} R \subset S, \quad g($ Spec $R)=I$, we have

$$
\text { for } \left.i \in[1, p-1] \quad 0 \neq\left(I_{1} \otimes_{R} R(p) \otimes_{R(p)} \overline{r(p)}\right)^{i} \subset A \otimes_{R} \overline{R(p)}\right)
$$

To conclude, we have the following lemma:

$$
\text { - } I=\bigoplus_{i=1}^{p-1} g_{i}
$$

- For $i \in[1, p-1], \quad g_{i}$ is invertible θ_{s}-module consisting of local sections of A st. $[m] f=\chi^{i}(m) f \quad \forall m \in \mathbb{\mathbb { F }}_{p}$
- $g_{i} g_{j} \subset g_{i+j} \quad \forall i, j$

$$
\text { - } \quad g_{1}^{i}=g_{i} \quad \forall i \in[1, p-1]
$$

Example:

$$
\begin{aligned}
\mu_{p, \Lambda} & =\operatorname{spec} B \quad \text { where } B=\frac{\Lambda[z]}{z^{p}-1} \\
S_{B}(z) & =z \otimes z \quad \& \quad[m] z=z^{m} \quad \forall m \in \mathbb{F}_{p}
\end{aligned}
$$

The augmentation ideal I is $B(z-1)=$

$$
\Lambda(z-1)+\cdots+\Lambda\left(z^{p-1}-1\right)
$$

For $\quad i \in \mathbb{Z}$,

$$
y_{i}:=(p-1) e_{i}(1-z)=\sum_{m \in \mathbb{F}_{p}^{*}} x^{-i}(m)\left(1-z^{m}\right)
$$

Depends only on $i \bmod p-1$

$$
\begin{gathered}
1-z^{m}=\frac{1}{p-1} \sum_{i=1}^{p-1} x^{i}(m) y_{i} \quad \text { for } m \in \mathbb{F}_{p}^{\pi} \\
\cdot s y_{i}=y_{i} \otimes 1+1 \otimes y_{i}+\frac{1}{1-p} \sum_{j=1}^{p-1} y_{j} \otimes y_{i-j} \\
I=\Lambda y_{1}+\cdots \quad+\Lambda_{p-1} \\
I_{i}=e_{i} I=\sum_{j} \Lambda y_{j} e_{i}=\uparrow y_{i} \\
\quad y_{i}=(p-1) e_{i}(1-z)
\end{gathered}
$$

Let $y:=y_{1}$, gen of I_{1}

Let $w_{1}, w_{2}, w_{3}, \ldots$ be st.

$$
I_{i} \Rightarrow y^{i}=w_{i} y_{i} \quad\left(I_{1}^{i}=I_{i} \quad \text { for } i \in[, p-1]\right)
$$

\therefore for $\quad i \in[1, p-1], \quad w_{i}$ is a unit

Proposition:

- w_{i} are invertible in 1 for $1 \leq i \leq p-1$.
- $B=\Lambda[y] \quad$ with $y^{p}=w_{p} y$
- $s y=y \otimes 1+1 \otimes y+\frac{1}{1-p} \sum \frac{y^{i}}{w_{i}} \otimes \frac{y^{p-i}}{w_{p-i}} v$
- $[m]_{y}=x(m) y$ for $m \in \mathbb{F}_{p}$

$$
w_{i} \equiv i!(\bmod p) \quad \text { for } \quad 1 \leq i \leq p-1
$$

Write $z \bmod p \&$

$$
\begin{aligned}
& S_{B}(z)=z \otimes z \\
& \text { en. terms of } \\
& S_{B}(y) \& \text { compare }
\end{aligned}
$$ terms

- $w_{p}=p w_{p-1}$

Choose an embedding $\quad \lambda_{p} \rightarrow K$ where K is some field containing a primitive prot of unity 3

Extend $\wedge \hookrightarrow K$ to
$\Lambda[z] \rightarrow K \quad$ by sending $\quad z \longmapsto \zeta$
Let $y_{i} \longmapsto \eta_{i} \quad \& \eta=\eta_{1}$

$$
\begin{aligned}
\eta_{p-1}=\operatorname{Im}\left(y_{p-1}\right) & =\sum_{m \in \mathbb{F}_{p}^{\prime}} x^{-(p-1)}(m)\left(1-3^{m}\right) \\
& =\underbrace{p-1}_{0} \underbrace{1}_{m \in \mathbb{F}_{p}^{*}} \sum_{m}^{m} \\
& =p \\
\eta^{p-1}=\underbrace{w_{p-1} \eta_{p-1}}_{\neq 0} & \therefore \eta \neq 0 \\
p w_{p-1} & =\eta_{p-1} w_{p-1}=\eta^{p-1}=\frac{\eta^{p}}{\eta}=w_{p}
\end{aligned}
$$

(Rok: using this embedding above we can compute $w_{i} \in \Lambda$ inductively)

Now, consider $\quad \operatorname{Sym}^{\circ}\left(g_{1}\right)=\theta_{S} \oplus g_{1} \oplus \operatorname{Sym}^{2}\left(g_{1}\right) \oplus$
\exists an θ_{s}-alg nom $\operatorname{symi}\left(g_{1}\right) \xrightarrow{\Phi} \&$ induced by the inclusion $g_{1} \subset A$

By the fact that $g_{1}^{i}=g_{i} \quad \forall i \in[1, p-1]$, this map is surfective.

Let $a \in \Gamma\left(S, g_{1}^{\otimes 1-p}\right)$ be the homomorphism $I_{1} \otimes P \longrightarrow I_{1}$ induced by. in A
ken ϕ is the ideal gen by $(a-1) \otimes I_{1}{ }^{\otimes p}$

Let $G^{\prime}=\operatorname{spec} A^{\prime}$ be the Cartier dual of $G \&$ let
$g^{\prime}, g_{i}^{\prime}$ and $a^{\prime} \in \Gamma\left(S,\left(\mathcal{I}_{1}^{\prime}\right)^{\otimes 1-p}\right)$ be the analogs of $g, f_{i} \&$ a for G.

- Note that $\left(\mathcal{I}_{A}\right)^{\prime}=\mathcal{I}_{A^{\prime}}$
as we are dualizing $\quad \theta_{S} \xrightarrow{e} \theta_{S} \oplus f_{A} \xrightarrow{\varepsilon} \theta_{S}$
- $\quad\left(g_{i}\right)^{\prime}=\left(e_{i f}\right)^{\prime}=\left(g^{\prime}\right)_{i}$

$$
\begin{aligned}
& g_{i}^{\prime}=\{\varphi: \quad[m] \varphi=\left.x^{i}(m) \varphi\right\} \\
& \text { If } \varphi \in(e i g)^{\prime} \quad([m] a)(a)=\varphi([m] a) \\
&=\left\{\begin{array}{l}
x^{i}(m) \varphi(a) \\
u a \in e_{i} j \\
0 \text { if } a \in e_{j} g
\end{array}\right. \\
& \because[m] \varphi=x^{i}(m) \varphi \\
&\left(e_{i}^{\lambda} g\right)^{\prime}
\end{aligned}
$$

