G : funite geat of ordur p
(Not quite) A Recap:
"spec A

- Let S be a \mathbb{Z}_{p} scheme. If G / s then of

2) $\cong \theta_{S} \oplus \mathcal{G} \oplus S_{S_{m}^{2} g} \oplus \cdots \oplus \underbrace{S_{y-1}^{p-1} g}_{g^{\circ} \sigma^{p-1}}$ for an unvertible sheaf g algmentation ideal

Alg structure comes from a map $a: g^{\otimes p} \xrightarrow{\longrightarrow} I$

$a \in\left(g^{v}\right)^{\otimes p-1}$

- $\quad A^{\prime} \cong \theta_{s} \oplus g^{v} \oplus\left(g^{v}\right)^{\otimes 2} \oplus \cdots \quad \oplus\left(g^{v}\right)^{\otimes p-1}$
$w /$ alg structure given by $b: g^{v \otimes p} \longrightarrow g^{v} \quad, b \in(G)^{\otimes p-1}$
- Over $\mathbb{Z}_{p}, G=\mu_{p}=\operatorname{spec} A$ where

3)

$$
\begin{array}{ll}
A= & \frac{\mathbb{Z}_{p}[y]}{y^{p}=w_{p y}} \\
A^{\prime}= & \frac{\mathbb{Z}\left[y^{\prime}\right]}{y^{\prime p}=y^{\prime}}
\end{array}
$$

Here $w_{p}=\overbrace{w_{p-1}}^{\text {wnit }} \cdot p$

- Recall: $\quad G \times G^{\prime} \underset{\lambda}{\longrightarrow} \mu_{p}, \mathbb{G}_{m}$ nondegenerate $\because G \& G^{\prime}$ are p-torsion

From this, it turns out that $a \otimes b \in\left(g^{v}\right)^{\otimes p-1} \otimes\left(g^{\otimes p-1}\right)$ $\int_{w_{p}} \in \theta_{s} d s$

- Theorem: For S over spec \mathbb{Z}_{p}
\{isom classes of S-gps of order $p\} \longleftrightarrow$ \{isom classes of

1)

$$
G_{a, b}^{L}
$$

$\underset{\uparrow}{\rightleftarrows}(L, a, b)$
construct inverse using structure of μ_{p}

$$
\begin{aligned}
& \text { Locallyon } \begin{array}{c}
S= \\
S_{\text {pec }} R,
\end{array} G_{a, b}^{L}=G \otimes_{R_{0}} R \text { where } \quad=R_{0}=\mathbb{Z}_{p}\left[x_{1}, x_{2}\right] / x_{1} x_{2}-w_{p} \\
& \text { - } R_{0} \longrightarrow R \\
& X_{1} \longmapsto a \\
& x_{2} \longmapsto b
\end{aligned}
$$

$$
\begin{aligned}
& s y=\mid \otimes y+y \otimes 1+ \\
& \frac{1}{1-p} \sum_{i=1}^{p-1} \frac{u^{p-1}}{w_{i} w_{p-1}} y^{i} \otimes y^{p-i}
\end{aligned}
$$

$E \cdot g$.

$$
\begin{aligned}
G_{a, b}^{L} \cong G_{a^{\prime}, b^{\prime}}^{L} \cong \quad 3 u & \Leftrightarrow \Gamma\left(S, \theta_{S}^{x}\right) \\
L & \sim L \\
\text { gen } & \longmapsto u \cdot g e n \\
a & \longmapsto u u^{p-1} a=a^{\prime} \\
b & \longmapsto u^{1-p} b=b^{\prime}
\end{aligned}
$$

Digression : Étale fundamental gp:
Let S be connected \& α a geometric pt of S

$$
\begin{array}{rlrl}
F: & \text { Finite étale } / s & \longrightarrow & \\
& \longrightarrow \text { finite sets } \\
y & \longmapsto & \pi^{-1} \alpha \cong \\
& & \operatorname{Hom}_{s}(\alpha, y)
\end{array}
$$

$\pi(S)=$ Ant $F \quad$ "fundamental gp of $S "$

We have a categorical : F: Finite étale / $S \quad \sim$ finite sets w/ equivalence cont. π-action

Finite étale gp schemes $/ S \sim$ finite π-modules

Finite étale gp schemes of order $\left.p / S \xrightarrow{\sim} \underset{\text { of order } p}{\sim} \sim \underset{\sim}{\sim} \sim \underset{\sim}{\sim} \sim \pi \rightarrow \mathbb{F}_{p}^{*}\right\}$
Ecg.
for K a field, $\quad \pi($ Spec $K)=\quad \quad G a l(\bar{K} / K)$
For R integrally closed domain, $\quad \pi($ Spec $R)=\quad U G a l(L / K)$

$$
K=\text { Frack }
$$

* integral closure of R en L is unramified mere R

$$
\pi\left(\operatorname{Spec} \mathbb{D}_{p}\right)=G_{Q_{p}}^{u n}
$$

Étale case: $\quad G_{a, b}^{L}$ is étale omer $S, S / \mathbb{Z}_{p}$ Locally on S sec $\subset S, \quad a_{a, b}^{R}=\operatorname{spec} \frac{R[y]}{y^{p}-a y}$

$$
\Omega_{a_{1}}=\frac{A d y}{\left(p y^{p-1}-a\right) d y}
$$

étale $\Leftrightarrow \Omega=0$ at each $K(x) \Leftrightarrow\left(p y^{p-1}-a\right) \neq 0$ ink (x)
$\Leftrightarrow\left\{\begin{array}{l}\overline{p y}=0: \\ \overline{p y} \neq 0\end{array}\right.$

$$
\begin{aligned}
& \bar{y}^{\prime} \equiv \overline{a y} \Rightarrow \bar{a}=\overline{y^{p-1}} \neq 0 \\
& k\left(p y^{1-1}-a\right)=\left(\frac{p-1)}{} \bar{y}^{p-1}\right.
\end{aligned}
$$

$\Leftrightarrow a$ is invertible
As $\quad a \otimes b=w_{p}, b$ is unique determined
Let $\alpha=\operatorname{spec} \Omega, \quad$ For étale $G_{a, b}, \quad F\left(G_{a, b}^{L}\right)=\operatorname{Hom}_{s}\left(\alpha, G_{a, b}^{L}\right)$ geom pt of S

$$
=\left\{x \in \operatorname{Hom}_{\theta_{S}-\bmod }(\xi, \Omega)\right.
$$

satisfying $\left.\quad x^{\otimes P}=a \otimes x\right\}$
p choices for x : $\quad x=0$
or the $p-1$ sections x satisfying $x^{\otimes P-1}=a$
Denote such a section by $p-1 \sqrt{(a, L)}$ π acts on
via $\psi$$G_{a, b}^{L}(\alpha) \quad \Rightarrow \quad$ induces action on x

The attached Galois chavacter satisfies

$$
\left.\begin{array}{rl}
& (\sqrt[p-1]{(a, L)})^{\sigma}= \\
\therefore \quad & \psi(\sigma)= \\
\therefore-1(\sigma)) \sqrt[p-1]{(a, L)} \\
\frac{p-1}{(a, L)} \sigma \\
a, L
\end{array}\right)
$$

Groups of order p over res of integers in \# fields.
K / Q finite
R integrally closed $C K, \quad$ Frac $R=K$
Let $M=$ nongenerie pts of Spec $R=$ nontriv discrete valuations of K whose val $r g \supset R$

For $v \in M$,
$R_{v}=$ completion of R at v
$K_{v}=\operatorname{Frac} R_{v}$

Key idea:
Let $E(x)=$ isom classes of x-gps of order p

$$
E(K) \longrightarrow \prod_{v \in M} E\left(K_{V}\right)
$$

is Cartesian.

To prove this we need a lemma:

Lemma: Let $9 / s$ finite of order m. If m is invertible in θ_{s}, G is étale over S.

Pf: Finite, flat
To check unramifeid, STS an geometric fibers.
so let $S=$ Speck , $k=\bar{k}$ (wTS that goo fibers one dist unions speck)
Étale connected component of $e=G_{0}$ is trivial
$\rightarrow\left(\because{ }^{\text {e }}\right.$ every \Leftrightarrow connected component has a rational $p t$ as these are finite type $k=\bar{k}$ schemes, \& $G_{0}=$ speck
\Rightarrow by translation by rational pts, me get all conn-components are \cong speck, $\quad G=\operatorname{speck} U \cdot U$ speck)

$\therefore A$ is adisicici set. By connedetanes, 1 pt)

$$
\begin{aligned}
& \Rightarrow \quad m \neq m^{2} \Rightarrow \quad\left(m / m^{2}\right)^{v} \neq 0 \\
& \Rightarrow a k-\text { derivation } \\
& \quad d \in 0 .
\end{aligned}
$$

Leibniz mile gives $S_{A^{\prime}}(d)=1 \otimes d+d \otimes 1$
$R[d] \longrightarrow A^{\prime}$ is a Hops subtle

- order divides m

Nontriv. Map f gp schemes: Spec $A^{\prime} \longrightarrow$ Spec $k[d] \longrightarrow S_{d} \longrightarrow$ Speck [t]= \mathbb{C}_{a}
\rightarrow As the map is nontiv, not all closed pts go to e as closed p ts are dense in A^{\prime}

Back to our cartesian diagram
$\left\{\begin{array}{l}\text { - Idea is where V1P, work it's étale, so we have a description } \\ \text { un terms of } \pi \text {-modules } \\ \text { where } V \mid P, L_{p} \subset \text { wee have an explicit dassification from pew section }\end{array}\right.$

Actually all we need for the applications is.

$$
E(R) \quad \longleftrightarrow \quad \pi E\left(R_{v}\right) \quad x_{\pi E\left(K_{v}\right)} \quad E(K)
$$

\rightarrow Certainly the map exists
(If $9, H$ are defined ores R st. $G \cong H$ over K over all R_{v}

Then let φ : $G_{k} \leadsto H_{k}$

$$
\Rightarrow \varphi_{v}: \quad G_{k_{v}} \sim H_{k_{v}}
$$

$$
\text { Ant }\left(G_{R_{v}}\right)=\mathbb{F}_{p}^{x} \quad \text { True for } v x_{p} \text {, }
$$

:p invertible

$$
\Rightarrow \text { étale } \Rightarrow
$$

$$
\mathbb{F}_{p}^{x} \text { character of } \pi
$$

$$
\text { for } v \mid P \text {, }
$$

$$
\mathbb{Z}_{p} \subset R_{v},
$$ so our classification applies \& we can check.

Q is comury form something ora R_{v} by equal cardinalitis of Ant gps.
So q defined over R, K \therefore over \mathbb{R}

Let $x=\quad$ spec K_{v} or spec R_{v} on spec K for any v for $v \not x p$
As p is invertible on X

$$
E(x)=\quad \text { Hon cont }\left(\pi^{a b}(x), \mathbb{F}_{p}^{x}\right)
$$

Class field theory:

$$
\begin{aligned}
& k_{N^{x^{A^{x}}}=C_{k}}^{\longrightarrow} \underset{\uparrow}{\pi(k)^{a b}}=G_{k}^{a b} \\
& \begin{aligned}
& K_{v}{ }^{*} \longrightarrow \pi\left(K_{v}\right)^{a b}= \\
& \downarrow \\
& K_{v}{ }^{*} / U_{v} \longrightarrow \quad G_{k_{v}}^{a b}
\end{aligned}
\end{aligned}
$$

These homomorphioms become isom after passage to profinite completions of domains.

$$
\begin{array}{ll}
E(K)= & H o m \\
E\left(K_{v}\right)= & H_{o m} \operatorname{cont}\left(K_{K}, \mathbb{F}_{p}^{*}\right) \\
\left.E\left(R_{v}\right)=\mathbb{F}_{p}^{*}\right) \quad \forall v \\
E & \left.H_{o m} \operatorname{cont}\left(K_{v}\right) U_{v}, \mathbb{F}_{p}^{*}\right) \quad v \times p
\end{array}
$$

Lemma

- Let vp Let $a \in K_{v}{ }^{*}$, \& let $q_{a} \in \operatorname{Homcont}\left(K_{v}{ }_{v}, \mathbb{F}_{p}^{*}\right)$ be the character corresponding $T_{0} \quad G_{a, b}^{K_{v}}$ over K_{v}

Then
 \& $\quad \varphi_{a}(u)=\left(N_{k_{v} / \mathbb{F}_{p}}(\bar{u})\right)^{-v(a)}$ for $u \in U_{v}$

Fact: This paving is non-dey on $K_{j}^{n} / K_{v}^{n}{ }^{p-1} \times K_{j}^{*} / K_{j}^{*}{ }^{p-1} \rightarrow \mathbb{F}_{p}^{*}$

Claws:
These conditions

Theorem 3:
 describe an

$$
\left\{\begin{array}{l}
\left(\psi_{,}\left(n_{v}\right)_{v /}\right), \text { where } \psi: C_{k} \rightarrow \mathbb{\pi}_{p}^{x}, \\
0 \leq n_{v} \leq v(p) \quad \forall v / p \text { and the }
\end{array}\right.
$$

following conditions me satisfied:
(i) forvtp ψ is unramified at v $\Leftrightarrow \psi_{v}\left(u_{v}\right)=1$
(ii) for v/p, $\psi_{v}(u)=\left(N_{k v / F_{p}}(\bar{u})\right)^{n_{v}}$
$\left.\forall u \in u_{v}\right\}$

$$
\left(\begin{array}{l}
\text { Here } \\
\psi_{v}
\end{array}{K_{v}^{\prime}}^{*} \rightarrow c_{k} \xrightarrow{\psi}{ت_{p}^{\prime}}^{\prime}\right)
$$

$$
a \quad \longmapsto \quad\left(\phi^{a},\left(n_{v}^{a}\right)_{v \mid p}\right)
$$

where ϕ^{4} is the idèle class character determined by $G \otimes_{R} K$

For $v \mid p, G \otimes_{R} R \cong G_{a, w_{p} a-1}^{R_{v}}$

$$
0 \leq n_{0}^{G}:=v(a) \leq v\left(w_{p}\right)=v(p)
$$

- For $v \nmid p$, condition (i) is saying that ψ_{v} should
be coming from the generic fiber of

i.e. fiber over ψ_{v} contains exactly 1 eft
- For $v \mid p$, Condition iii guarantees that fiber over

$$
\Psi_{v} \in E\left(K_{v}\right) \text { is non-empty in } E\left(R_{v}\right)
$$

Furthermore it is unique if we restrict considuation to $G_{v} \cong G_{a, w_{p} a^{-1}}^{2}$ in preimage $s \cdot t^{\prime}$

$$
V(a)=n_{V}
$$

Pf: If $G_{v}=G_{a}^{R_{v}}, w_{p} a^{-1}$ is in preimage of ψ_{r}, then

$$
\begin{aligned}
& \Psi_{v}=\varphi_{a} \text { by peer lemma }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\therefore \exists \text { a unique } a \in K_{v}^{*} \bmod \left(K_{v}\right)^{p-1} \text { set. } Q_{a}(x)\right)
\end{aligned}
$$

$$
\varphi_{a}=\psi_{v}
$$

By per er lemma $\quad a_{a}(u)=\quad N_{k_{v} / \mathbb{F}_{p}}(\bar{u})^{-v(a)}$
As $N_{k_{r} / F_{p}}$ is sungective, $\quad n_{r} \equiv v(a) \bmod p-1$
Changing a by a $p-1$ power of uniformize, we get $v(a)$ $=n_{v} \&$ a unravel determined mod $k^{p-1} \cap u_{v}=$ $\bmod u_{0}^{p-1}$
$\therefore a_{v}$ is uniquely determined.

Note that
For a given family of integers $\left(n_{v}\right)_{v / p}$.

- either there is no idèle class char satisfying (i) \& (ii), or
- the set of all such has a free \& transitive action by the gp of characters $\underbrace{\mathrm{k}^{\lambda \lambda} / \pi u_{v}}_{\text {ideal class op }}$
\therefore If class number is prime to p, \exists at most one ψ for each family $\left(n_{v}\right)_{v / p}$
\# of families $\left(n_{v}\right)_{v / p}=\prod_{v / p}(v(p)+1)$.
\therefore if p is pune in R, \exists gust 2 families: $n_{r}=0$, $n_{v}=1^{\prime}$ for the unique v / p

Corollary: if $R=\mathbb{Z}$ or if R is $r g$ of integers in a field of class $\#$ prime to $p-1$ st $p R$ is a prime ideal in R, then the only R-gps of order p are $(\mathbb{Z} / p \mathbb{Z})_{R} \& \mu_{p}, R$

Corollary: Let R be $a r g$ of integers in a field of ramification index $<p-1$ at all places above p Then a gp scheme over R of order p is determined by its generic fiber.

Pf: Generic fiber determines ψ_{v} satiofyny (i) \& (ii) $\forall r$

- for vp. we get a unique eft of $E\left(R_{v}\right)$ gory Ψ_{v} in its generic fiber
- For v / p, we found G_{v} earlier by funding $a: \quad \varphi_{a}=\psi_{v}$

As $\quad v(a)<p-1: v(p)<p-1$
knowing $\psi_{v}(u)$ determines $n_{v} \bmod p-1$ \&: $\quad v(a)$ is determined
$\therefore a$ is defecumined mod U^{p-1}.

