Ci: finite flat of order p

(Not quite) A Recap : ", spec A • let S k a Zp scheme Sj G/S then \Re $\cong \Theta_S \oplus \mathcal{G} \oplus Sym^2 \mathcal{S} \oplus \cdots \oplus Sym^{p-2} \mathcal{G}$ for an invertible sheaf \mathcal{G} $\mathcal{G} \oplus \mathcal{G}^{p-1}$ augmentation ideal Alg structure comes from a map $a: S^{\otimes p} \longrightarrow S$ $a \in (S^{\vee})^{\otimes p-1}$ • $\mathfrak{A}' \stackrel{\simeq}{=} \mathcal{O}_{\mathfrak{S}} \oplus \mathfrak{S}^{\vee} \oplus (\mathfrak{S}^{\vee})^{\otimes 2} \oplus \cdots \oplus (\mathfrak{S}^{\vee})^{\otimes p-1}$ $\mathfrak{A}' \mathfrak{s} \oplus \mathfrak{S}^{\vee} \oplus \mathfrak{S}^{\vee}$ Over Zp, G= up = Spec A where • $A = \frac{\mathbb{Z}_{p}[y]}{y^{p} = w_{p}y}$ $A' = \frac{\mathbb{Z}[y']}{y'^{p} = y'}$ Here $W_p = W_{p-1} \cdot P$ 3) • Recall : Q × Q' ____ Cim nondegenerate : G & G' are p-torsion $a \otimes b \in (\underline{4}^{\vee})^{\otimes p-1} \otimes (\underline{4}^{\otimes p+1})$ From this, it turns out that $\int_{\mathbf{r}_{-}} \int_{\mathbf{s}_{-}} \int_{$

Sover Spec Zo Theorem : For Eisom classes of S-gps of order py isom classes of \leftarrow triples injective (L, a, b) \mathbf{t} where L is an inv Os sheaf, $a \in \Gamma(S, L^{\otimes p-1})$ be $\Gamma(S, L^{\otimes 1-\tilde{P}})$ a@b = Wp. Ior 9^v, a, b) G define using 3 Define

Étale cane :
$$G_{a,b}^{L}$$
 is étale roor S, $S/2p$
Lotally on Spec $R \in S$, $G_{a,b}^{R} = Spec \frac{R[y]}{y^{2} - ay}$
 $\Omega_{4/R} = \frac{A_{4y}}{(2y^{2} - a)}$
 $\Omega_{4/R} = \frac{A_{4/R}}{(2y^{2} - a)}$

Groups of order p over vgs of integers in # fields. K/Q finite R integrally closed CK, Frac R = KLet M = nongeneric pto of Spec R = nontriv discrete valuations of K whose val rg > R For ve M, $R_v = completion q R at v$ $K_v = Frac R_v$ Key idea : Let E(X) = isom classes of X-gps of order p $E(K) \longrightarrow TT E(K_{v})$ VE M is Cartesian.

To prove this we need a temma: let 9/S finite of order m. Sf m is invertible in DS, 9 is étale over S. Lemma: Finite, flat ~ To check unramified, STS on geometric fibers. Pf: so let S = Speck, $k = \overline{k}$ (WTS that gue fibers are diegt unions of speck) Étale connected component of e = Go is \ominus trivial (" every connected component has a rational pt as these are finite type k= k schemes, & Go = Speck =) by translation by viational pts, me get all conn- components me ≥ Speck, Ci = SpeckU.-U Speck) Fout : dividus G° = Spec A, (A is finite over k 56 G° ≠ Ee3, : dem A = 0 + finitely many ined component ... A is a discrete set. By connected new, 1 pt) k⊕Í Áù an artinian local rg with v.s. dim = p an ⇒) $(m/m^2)^{\vee}$ =) M ≠ M ² 山 ≠ 0 ∃ ~ k- derivation d≠0

$$d \in A'$$

$$heibnig nule quies S_{A'}(d) = 1 \otimes d + d \otimes 1$$

$$n[d] \hookrightarrow A' \quad is a Hops subalq$$

$$corduv \quad divides m$$
Non triv Map of gp schemes: Spec A' \longrightarrow Spec k[d] \longrightarrow Spec k[t] = Cha

$$d \leftrightarrow d \quad \leftarrow t$$

$$As the map is nontriv, not all closed pts go to e as closed pts are dense in A'
$$:: \exists x^{t^{0}} in \ k, seen as im in Closed pt in A'$$

$$st \cdot mx = 0 \implies x = 0 \implies = \infty$$$$

Back to our cartesian diagram J. Idea is where vfp, ^{n mark}, 0 un terms of π-modules . where v/p, 2pc^{Rn} vie have an explicit classification from prove section Actually all me need for the applications is. $E(R) \longrightarrow TTE(R_v) \times TTE(K_v) E(K)$ - Certainly the map exists If G, H one defined over Rs.t. $G \cong H$ over K kover all R_v Then let q: GK ~ HK Aut $(G_{R_v}) = H_p^{\times}$ True for $V \not P$, * p învertible =) etale =) \mathbb{F}_{p}^{\times} characters of For V Ps $\mathbb{Z}_{p} \subset \mathbb{R}_{v},$ so our classification applies & me can check. dy is coming from something me Ru by equal cardinalities of Ant gps. So 9 defined over R., K : oner R

clarin ; These conditions describe an ett of the TER product TER E(R) XTI E(K) actually rection Theorem 3: fillowing conditions me satisfied : (i) for v / p y is unramified at v $\iff \Psi_{v}(U_{v}) = 1$ (ii) for v|p, $\Psi_v(u) = (N_{Rv}/F_p(\bar{u}))^{nv}$ AREN' P (Here ($\Psi_{v}: K_{v}^{*} \longrightarrow C_{k} \xrightarrow{\Psi} \overline{F}^{*}$) $(q^{4}, (n^{4})_{v|p})$ દ where qq is the ideale class character determined by Gork For V/P, GORR = Ga, wpa-1 $0 \leq n_v^{\mathcal{G}} := v(a) \leq v(w_p) = v(p)$ For vfp, Condition (i) is saying that the chould be coming from the generic fiber of a unique gp scheme one R, (=) E(Ri) clear } $Y_v \in E(K_v)$

i.e. fiber over
$$\psi_{v}$$
 contains exactly 1 elt
• For $v \mid p$, Condition (i) guarantees that fiber over
 $\psi_{v} \in E(K_{v})$ is non-empty in $E(R_{v})$
 $E(K_{v})$

Furthermore it is unique if we restrict considuration
to
$$G_V \cong G_{a, wpa^{-1}}$$
 in preimage s.t.
 $V(a) = N_V$

PS:
$$\int_{V} G_{N} = G_{n}^{Q_{N}} v_{N} a^{A}$$
 is in preimage $\int_{V} V_{r}$, then
 $\frac{V_{V}}{V} = G_{n}$ by proviewing V_{r} , then
 $\frac{V_{V}}{V} = G_{n}$ by proviewing V_{r} , $\frac{V_{r}}{V_{r}}^{D^{-1}}$, $\frac{V_{r}}{V}$ (by digeners)
 $\frac{V_{r}}{V_{r}}(K_{r})^{p-1}$ $\xrightarrow{V_{r}}$ Hom $\int_{V_{r}}(K_{r}^{*})^{p-1}$, $\frac{V_{r}}{V}$ (by digeners)
 $\frac{G_{n}}{V_{r}} = V_{r}$
by proviewing $a \in K_{r}^{*} \mod(K_{r}^{*})^{p-1}$ set: $G_{n}(x_{r})$
 $\frac{G_{n}}{V_{n}} = V_{r}$
by proviewing $a(x) = -V_{r}$
 $N_{K_{r}}/F_{p}$ (\overline{u})^{-V(n)}
 $A_{N} = V(n) \mod p-1$
Changing a by $a p-1$ proves d uniformized, we get $V(n)$
 $= N_{V} K$ a uniquely determined W_{r}^{r+1}
 $\cdot G_{V}$ is uniquely determined.
Note that
For a given family $\int_{V} integers$ (N_{V}) $v|_{P}$.
 \cdot either there is nor iddele class char satisfying
(i) $K(i)$, or
 \cdot the set of all Such has a free k transitive
action by the gp d characters $V_{r}^{*}/\pi U_{V}$
 $V_{r}^{*}/\pi U_{V}$

St class number is prime to p,
$$\exists$$
 at most one ψ for
each family $(nv)v|p$ there $v \leq nv \leq v(p)$
of families $(nv)v|p = \prod_{v|p} (v(p)+1)$.
: $\psi|p$ is prime in R, \exists just 2 families : $n_v = 0$
 $n_v = 4$
for the unique $V|p$

Corollary: If R = Z or y R is rg of integers in a field of class # prime to p-1 s-t pR is a prime ideal in R, then the only R-gps of order p are $(\mathbb{Z}/p\mathbb{Z})_{R}$ & $\mu_{P,R}$

Let R be a rg of integers in a field of Corollary : ramification index < p-1 at all places above p Then a gp scheme over R of order p is determined by its generic fiber.

Pf: Generic fiber defermines 4, satisfyng i) bill +r • for vfp, we get a unique elt 1 E(Rr) gwing 4, in its generic fiber

· For V/P, We found Gv earlier by finding $a: q_a = \psi_{v}$

As v(a) < p-1 = v(p) < p-1. knowing Yv (u) determines Nv mod p-1 &: V(a) is determined : a is defermined mod U^{p-1}